Chap. 2. Molecular Weight and Polymer Solutions

2.1 Number Average and Weight Average Molecular Weight
A) Importance of MW and MW Distribution
> M.W. \Leftrightarrow physical properties As M.W. $\widehat{\Downarrow}$, toughness $\widehat{\Perp}$, viscosity $\widehat{\downarrow}$

1) Optimum MW, MW Distribution
depends upon application via processing and performance tradeoffs
2) Typical MW values for commercial polymers
a) Vinyl polymers in the 10^{5} and 10^{6} range
b) Strongly H-bonding polymers in the 10^{4} range e.g., 15,000-20,000 for Nylon

Intermolecular Interactions

Increasing Interaction Strength

Type of Interaction	Characteristics	Approximate Strength	Examples
Dispersion Forces	Short Range Varies as - $1 / \mathrm{r}^{6}$	0.2-0.5 kcal/mole	Poly(ethylene) Polystyrene
Dipole/dipole Interactions	Short Range Varies as - $1 / \mathrm{r}^{4}$	0.5-2 kcal/mole	Poly(acrylonitrile) PVC
Strong Polar Interactions and Hydrogen Bonds	Complex Form but also Short Range	1-10 kcal/mole	Nylons Poly(urethanes)
Coulombic Interactions	Long Range Varies as $1 / r$	10-20 kcal/mole	Surlyn (lonomers)

Surlyn: copolymers such as ethylene/methacrylic acid, DuPont adds zinc, sodium, lithium or other metal salts.
B) Number Average Molecular Weight, \bar{M}_{n}

1) Very sensitive to the total number of molecules in solution and
\therefore sensitive to the low molecular weight monomers and oligomers

- Determined by End Group Analysis and Colligative Properties
(freezing point depression, boiling point elevation, osmotic pressure)

2)

$$
\overline{\mathbf{M}_{\mathrm{n}}}=\frac{\sum \mathbf{N}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}}{\sum \mathbf{N}_{\mathbf{i}}}
$$

where $N_{i}=$ \# of molecules (or \# of moles) having MW M_{i}
3) Example

9 moles of $\mathrm{MW}=30,000$ and 5 moles of $\mathrm{MW}=50,000$
$\Rightarrow \overline{\mathbf{M}}_{\mathrm{n}} \approx 37,000$
C) Weight Average Molecular Weight, $\overline{\mathbf{M}_{\mathrm{w}}}$

1) Sensitive to the mass of the molecules in solution
\therefore sensitive to the very highest MW species

- Determined by Light Scattering and Ultracentrifugation

2)

$$
\overline{\mathbf{M}_{w}}=\frac{\sum \mathbf{W}_{i} \mathbf{M}_{\mathrm{i}}}{\sum \mathbf{W}_{\mathrm{i}}}=\frac{\sum \mathbf{N}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}{ }^{2}}{\sum \mathbf{N}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}}
$$

3) Example

9 moles of $\mathrm{MW}=30,000$ and 5 moles of $\mathrm{MW}=50,000$
$\Rightarrow M_{w} \approx 40,000$
4) Note:
a) $\overline{M_{w}} \geq \bar{M}_{n}$
b) $\frac{\overline{\mathbf{M}}_{w}}{\overline{\mathbf{M}}_{\mathrm{n}}}=$ polydispersity index (PDI)
c) For a sample having a single MW (Monodisperse)

$$
\overline{M_{w}}=\overline{M_{n}} \quad \frac{\bar{M}_{w}}{\bar{M}_{n}}=1
$$

d) Polydisperse

$$
\frac{\overline{\mathbf{M}}_{w}}{\overline{\mathbf{M}}_{\mathrm{n}}}>1
$$

D) General Molecular Weight Expression \& $\overline{\mathbf{M}_{z}}$ and $\overline{\mathbf{M}_{v}}$
1)

$$
\bar{M}=\frac{\sum N_{i} M_{i}^{a+1}}{\sum N_{i} M_{i}^{a}} \quad \begin{array}{ll}
a=0 \text { for } \bar{M}_{n} & 0<a<1 \text { for } \bar{M}_{v} \\
a=1 \text { for } M_{w} & a=2 \text { for } M_{z}
\end{array}
$$

$$
\text { For polydisperse sample } \overline{M_{z}}>\bar{M}_{w}>\bar{M}_{v}>\bar{M}_{n}
$$

2) Z average, is closely related to processing characteristics $\Rightarrow \mathbf{a}=\mathbf{2}$

$$
\overline{\mathbf{M}}_{\mathrm{z}}=\frac{\sum \mathbf{N}_{\mathrm{i}} \mathbf{M}_{\mathbf{i}}^{3}}{\sum \mathbf{N}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}^{2}}
$$

3) Viscosity average $M W, \bar{M}_{v}$, has $0 \leq a \leq 1$ and closer to 1 (i.e., to \bar{M}_{w})

$$
\bar{M}_{v}=\left(\frac{\sum \mathbf{N}_{i} \mathbf{M}_{\mathbf{i}}^{a+1}}{\sum \mathbf{N}_{i} \mathbf{M}_{\mathbf{i}}}\right)^{\frac{1}{a}}
$$

$$
\overline{\mathbf{M}}_{\mathrm{v}}=\left(\frac{\sum \mathbf{N}_{i} \mathbf{M}_{\mathrm{i}}^{1.8}}{\sum \mathbf{N}_{i} \mathbf{M}_{\mathrm{i}}}\right)^{\frac{1}{0.8}}
$$

in a typical case

2.2 Polymer Solutions

A) Steps Dissolving a Discrete Molecule and a Polymer

1) Discrete Molecule Dissolution Steps for a Crystalline Sample
2) Polymer Dissolution Steps
a) Solvent diffusion
i) Solvation \& swelling
ii) Gel formation
iii) Network polymers stop at this stage Degree of swelling correlated with crosslink density
b) True dissolution
i) Untangling of chains
ii) Very slow process and may not occur on timescale of real world
B) Thermodynamics of Polymer Dissolution
3) Choosing a Solvent for Polymers
a) Polymer Handbook!
lists solvents and nonsolvents for common polymers
b) Rule of Thumb: Like dissolves Like
4) $\Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathrm{S}$
a) ΔG must be negative for spontaneous dissolution
b) $\Delta \mathrm{S}$ will be positive because of greater mobility in solution
c) \therefore need ΔH to be negative or at least not too positive
5) $\Delta \mathbf{H}_{\text {mix }} \propto\left(\delta_{1}-\delta_{2}\right)^{2}$
a) $\Delta \mathrm{H}_{\text {mix }}=$ Enthalpy of mixing (dissolution)
b) $\delta_{1}=$ Solubility Parameter of one component
c) $\delta_{2}=$ Solubility Parameter of the other component
6) In practice, $\Delta \mathrm{H}$ is seldom negative and we simply try to keep it from getting too positive
7) \therefore We see that we want the polymer and the solvent to have as similar of Solubility Parameters as possible
C) Solubility Parameters (δ)
8) δ is related to the heat of vaporization of the sample

$$
\Delta \mathbf{H}_{\text {mix }}=\mathrm{V}_{\text {mix }}\left[\left(\frac{\Delta \mathrm{E}_{1}}{\mathrm{~V}_{1}}\right)^{\frac{1}{2}}-\left(\frac{\Delta \mathrm{E}_{2}}{\mathrm{~V}_{2}}\right)^{\frac{1}{2}}\right]_{1}^{2} \phi_{1} \phi_{2}
$$

Where $\mathbf{V}_{\text {mix }}=$ total volume of mixture

$$
\begin{aligned}
& \mathrm{V}_{1}, \mathrm{~V}_{2}=\text { molar volumes } \\
& \phi_{1}, \phi_{2}=\text { volume fractions }
\end{aligned}
$$

$$
\Delta E_{1}, \Delta E_{2}=\text { energies of vaporization }
$$

$$
\begin{gathered}
\frac{\Delta \mathrm{E}_{1}}{\mathrm{~V}_{1}}, \frac{\Delta \mathrm{E}_{2}}{\mathrm{~V}_{2}}=\text { cohesive energy desities (CED) } \\
\left(\frac{\Delta \mathrm{E}}{\mathrm{~V}}\right)^{\frac{1}{2}}=\delta \text { = solubility parameter }
\end{gathered}
$$

CED = energy needed to remove a molecule from its nearest neighbors \cong heat of vapoization per volume for a volatile compound
2) For small molecules these can be measured experimentally

$$
\begin{aligned}
& \Delta \mathrm{E}=\Delta \mathrm{H}_{\text {vap }}-\mathrm{RT} \\
& \text { where } \Delta \mathrm{H}_{\text {vap }}=\text { latent heat of vaporization } \\
& \qquad \mathbf{R}=\text { gas constant } \\
& \delta_{1}=\left(\frac{\Delta \mathrm{H}_{\text {vap }}-\mathbf{R T}}{\mathrm{V}}\right)^{\frac{1}{2}}
\end{aligned}
$$

3) $\therefore \delta$'s of solvents are tabulated
4) For conventional polymers these can be estimated using tables
a) Group Molar Attraction Constants
b) Table 2.1 Group molar attraction constants

	$\mathrm{G}\left[\left(\mathrm{cal} \mathrm{cm}{ }^{3}\right)^{1 / 2} \mathrm{~mol}^{-1}\right]$	
Group	small	Hoy
$\mathrm{CH}_{3}-$	214	147.3
- $\mathrm{CH} 2-$	133	131.5
$\bigcirc \mathrm{CH}-$	28	85.99
C-	-93	32.03
$=\mathrm{CH}_{2}$	190	126.5
$=\mathrm{CH}$	19	84.51
$=\mathrm{C}_{6} \mathrm{H}_{5} \quad$ (phenyl)	735	-
$-\mathrm{CH}=$ (aromatic)	-	117.1
$\chi_{\mathrm{C}}=0 \quad$ (ketone)	275	262.7
$-\mathrm{CO}_{2}-\quad$ (ester)	310	32.6

c) $\delta=\frac{\mathbf{d} \sum \mathbf{G}}{\mathbf{M}}$
i) $\mathbf{G}=$ the individual Group Molar Attraction Constants of each structural fragment
ii) $\mathbf{d}=$ density
iii) $M=$ molecular weight
d) For polystyrene
$\mathbf{d}=1.05$, repeating unit mass $=104 \quad \mathrm{C}_{6} \mathrm{H}_{5}$

Small's G values

$$
\delta=\frac{1.05(133+28+735)}{104}=9.0
$$

Hoy's G values

$$
\delta=\frac{1.05(131.5+85.99+6(117.1))}{104}=9.3
$$

e) Major problem with solubility parameters:

They do not take into account strong dipolar forces such as hydrogen bonding.

D) Hydrodynamic Volume $\left(\mathrm{V}_{\mathrm{h}}\right)$ in Solution

1) The apparent size of the polymer in solution
2) Reflects both the polymer chain itself and the solvating molecules in inner and outer spheres

$$
\begin{aligned}
& \mathrm{r}=\text { end-to-end distance } \\
& \mathrm{s}=\text { radius of gyration }
\end{aligned}
$$

FIGURE 2.I. Schematic representation of a molecular coil, $r=$ end-to-end distance; $s=$ radius of gyration.
$\overline{\mathbf{r}^{2}}=$ mean-square end-to-end distance
$s^{2}=$ mean-square radius of gyration
For a linear polymer: $\overline{r^{2}}=6 \overline{s^{2}}$

$$
\mathbf{V}_{\mathrm{h}} \propto\left(\overline{\mathbf{r}^{2}}\right)^{\frac{3}{2}}
$$

Root-Mean-Square End-to-End Distance

If $\mathrm{N}=10,000, \ell=1$;
$\left(\overline{r_{0}}{ }^{2}\right) 0.5=100!!!$

$$
\begin{aligned}
& {\overline{r_{0}}}^{2}=\mathbf{N} \ell^{2} \\
& \left(\bar{r}_{0}^{2}\right)^{0.5}=N^{0.5} \ell
\end{aligned}
$$

3) Hydrodynamic Volume is related to an Expansion Factor, α
a) The greater the affinity of solvent for polymer, the larger will be the sphere.

$$
\begin{aligned}
& \overline{r^{2}}=\overline{r_{0}^{2}} \alpha^{2} \\
& \overline{s^{2}}=\overline{s_{0}^{2}} \alpha^{2}
\end{aligned}
$$

$$
\alpha=\left(\frac{\overline{\mathbf{r}^{2}}}{\overline{\mathbf{r}_{0}^{2}}}\right)^{\frac{1}{2}}=\left(\frac{\overline{\mathbf{s}^{2}}}{\overline{\mathbf{s}_{0}^{2}}}\right)^{\frac{1}{2}}
$$

$r_{0}, s_{0}=$ unperturbed dimension

$\alpha=$ expansion factor
T interactions between solvent \& polymer
b) $\alpha=1$ for the "non-expanded" polymer in the "ideal" statistical coil having the smallest possible size
c) as α increases, so does the Hydrodynamic Volume of the sample
E) Theta (θ) State

1) Solubility varies with temperature and the nature of the solvent
2) \therefore There will be a minimal dissolution temperature call the Theta Temperature and at that point the solvent is said to be the Theta Solvent
3) The Theta State at this point is the one in which the last of the polymer is about to precipitate
4) Compilations of Theta Temperatures \& Solvents are available in the literature

F) Intrinsic Viscosity \& Molecular Weight

1) $[n]=$ Intrinsic Viscosity

$$
\begin{array}{ll}
\eta_{\text {rel }}=\frac{\eta}{\eta_{0}} & \eta_{\text {sp }}=\frac{\eta-\eta_{0}}{\eta_{0}} \\
\eta_{\text {inh }}=\frac{\ln \eta_{\text {rel }}}{c} & {[\eta]=\left(\frac{\eta_{\text {sp }}}{c}\right)_{c=0}=\frac{\eta_{\text {sp }}}{c}} \\
=\left(\eta_{\text {red }}\right)_{c=0}=\left(\eta_{\text {inh }}\right)_{c=0}
\end{array}
$$

2) Flory-Fox equation

$$
[\eta]=\frac{\phi\left(\overline{\mathbf{r}^{2}}\right)^{\frac{3}{2}}}{\overline{\mathbf{M}}}=\frac{\phi\left(\overline{r_{0}{ }^{2}} \alpha^{2}\right)^{\frac{3}{2}}}{\overline{\mathbf{M}}}
$$

where $\phi=$ proportionality constant $=$ Flory constant $\cong \mathbf{3 \times 1 0 ^ { 2 4 }} \mathbf{~ m o l}^{-1}$

Rearranged to

$$
\begin{aligned}
& \text { where } \\
& \mathbf{K}=\phi\left(\overline{\mathbf{r}_{0}{ }^{2}} \overline{\mathbf{M}}^{-1}\right)^{\frac{3}{2}} \quad \because \overline{\mathbf{r}_{0}{ }^{2}} \propto \mathbf{M}
\end{aligned}
$$

At $\mathbf{T}=\theta, \alpha=1$

$$
[\eta]_{\theta}=\mathbf{K} \overline{\mathbf{M}}^{\frac{1}{2}}
$$

θ solvent
At $\mathbf{T} \neq \theta, \quad \alpha=\alpha(\mathbf{M}) \propto \mathbf{M}^{0-0.1}$

$$
[\eta]=K \bar{M}^{0.8} \quad \text { good solvent } \quad \because \alpha \propto M^{0.1}
$$

3) Mark- Houwink-Sakurada Equation
a)

$$
[\eta]=K \bar{M}_{v}^{a}
$$

b) K and a are characteristic of the particular solvent/polymer combination
c) $a=0.5(\theta$ solvent $) \sim 0.8$ (good solvent)

2.3 Measurement of Number Average Molecular Weight \mathbf{M}_{n}

-General Considerations

1) Most methods give only averages

Exceptions are: GPC, Light Scattering, MS
2) Most methods' results vary depending on the structure of the sample
\therefore need to calibrate each sample and/or know some structural information such as branching
3) Most methods have limited sensitivities and/or linear ranges
4) Most methods require expensive instrumentation
5) There can be substantial disagreements between the results of different techniques

2.3.1 End- group Analysis

1) Basic principles
a) The structures of the end groups must be different from that of the bulk repeating units (e.g., CH_{3} vs. CH_{2} in an ideal polyethylene)
b) \therefore If you detect the concentration of the end group and know the total amount of sample present you can calculate the average MW, M_{n}.
i) need to have either a perfectly linear polymer (i.e., two end groups per chain or need to know information about the amount of branching
ii) \therefore the \mathbf{M}_{n} values that come out for "linear" polymers must typically be considered an upper bound since there may be some branching
c) Detection of concentrations of end groups
i) Titration, using either indicators or potentiometric techniques
ii) Spectroscopy - IR, NMR, UV-Vis
iii) Elemental Analysis
iv) Radioactive or Isotopic labels

> Linear polyerster HOOC~~~OH

$$
\overline{\mathrm{M}}_{\mathrm{n}}=\frac{\text { sample weight }}{\frac{[\mathrm{COOH}]+[\mathrm{OH}]}{2}}=\frac{2 \times \text { sample weight }}{[\mathrm{COOH}]+[\mathrm{OH}]}
$$

2) Strengths
a) The requisite instruments are in any department
b) can be quite quick
c) Sometimes this information comes out "free" during polymer structural studies
3) Weaknesses
a) does not give MW distribution information
b) need to know information about the structure

- identity and number of end groups in each polymer molecule
c) limited to relatively low MW for sensitivity reasons
i) Practical upper limit ; 50,000
ii) 5,000-20,000 is typical MW range
iii) Can be high with some detections types
- radioactive labeling of end groups
- fluorescent labeling of end groups
2.3.2 Membrane Osmometry

Static equilibrium method:
No counterpressure, Long time

Fig. 2.2 Membrane Osmometry

Dynamic equilibrium method: Counterpressure, short time

Fig. 2.3 Automatic Membrane Osmometry

Van't Hoff equation

$$
\frac{\pi}{c}=\frac{R T}{\bar{M}_{n}}+A_{2} \mathbf{c}
$$

where

```
( \(\pi=\) osmotic pressure
    \(=\rho g \Delta h\)
    \(R=\) gas constant \(=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
        \(=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
    c = concentration [g L-1]
    \(\rho=\) solvent density [ \(\mathrm{g} \mathrm{cm}^{-3}\) ]
    \(\mathrm{g}=\) acceleration due to gravity
    \(=9.81 \mathrm{~m} \mathrm{~s}^{-2}\)
    \(\Delta h=\) difference in heights of solvent and solution [cm]
\(\mathrm{A}_{2}=\) second virial coefficient = measure of interaction between
    solvent and polymer
\(\mathrm{A}_{2}=0\) at \(\mathrm{T}=\theta, \mathrm{A}_{2}>0\) at \(\mathrm{T}>\theta\)
```

Major source of error: low-M.W.-species diffuse through membrane
$\therefore \mathrm{M}_{\mathrm{n}}$ (obtained) $>\mathrm{M}_{\mathrm{n}}$ (actual)

$$
50,000<M_{n}<2,000,000
$$

Chemical Potential of Dilute Solutions

The chemical potential of a solvent in a solution is

$$
\mu_{s}=\mu_{s}^{o}+R T \ln a_{s}
$$

$\mu_{s}^{o}=$ chemical potential for pure solvent at T
$a_{s}=$ activity of solvent

If the solvent vapor obeys the ideal gas law, we have

$$
\mu_{s}=\mu_{s}^{o}+R T \ln \frac{P_{s}}{P_{s}^{o}}
$$

$$
P_{s}<P_{s}^{o}
$$

$P_{s}=$ vapor pressure above the solution at T
$P_{s}^{o}=$ vapor pressure above the pure solvent at T

Raoult's Law

In general, the activity is related to vapor pressure by

If the solution is sufficiently dilute, Raoult's Law will be obeyed

$$
a_{s}=x_{s}=\frac{P_{s}}{P_{s}^{o}}
$$

$x_{s}=$ mole fraction of solvent in solution

$$
\mu_{s}=\mu_{s}^{o}+R T \ln x_{s}
$$

Osmotic Pressure

Semipermeable membrane

The osmotic pressure π is the additional pressure that must be imposed to keep solvent and solution sections at the same level. This static method requires a long time to reach equilibrium.

Derivation of Van't Hoff Equation

At constant temperature, the chemical potential depends upon both pressure and composition.

$$
\mu_{s}=f\left(P, x_{p}\right)
$$

$$
x_{p}=1-x_{s}
$$

The total derivative of the chemical potential is then

$$
d \mu_{s}=\left(\frac{\partial \mu_{s}}{\partial P}\right)_{T, x_{p}} d P+\left(\frac{\partial \mu_{s}}{\partial x_{p}}\right)_{T, P} d x_{p}
$$

If no solvent flow occurs, $\mathrm{d} \mu_{\mathrm{s}}=0$

$$
\left(\frac{\partial \mu_{s}}{\partial P}\right)_{T, x_{p}} d P=-\left(\frac{\partial \mu_{s}}{\partial x_{p}}\right)_{T, P} d x_{p}
$$

$$
\begin{aligned}
& d E=T d S-P d V \\
& d H=d(E+P V) \\
& \text { = TdS - PdV + PdV - VdP } \\
& =\mathrm{TdS}+\mathrm{VdP} \\
& \text { dG = d(H - TS) } \\
& \text { = TdS + VdP - TdS - SdT } \\
& =- \text { SdT + VdP } \\
& \mathbf{d G}=-\mathbf{S d T}+\operatorname{VdP}\left(+\mu_{\mathrm{s}} \mathbf{d} \mathrm{n}_{\mathrm{s}}+\mu_{\mathrm{p}} \mathbf{d} \mathrm{n}_{\mathrm{p}}\right) \\
& \left(\frac{\partial \mathbf{G}}{\partial \mathbf{P}}\right)_{T, n_{s}, n_{p}}=\mathbf{V}
\end{aligned}
$$

Derivation of Van't Hoff Equation

The chemical potential is defined by

Partial differentiation with respect to P yields

$$
\left(\frac{\partial \mu_{s}}{\partial P}\right)_{T, x_{p}}=\frac{\partial^{2} G}{\partial P, \partial \mathbf{n}_{s}}
$$

Derivation of Van't Hoff Equation

The volume of the system is given by

$$
\left(\frac{\partial G}{\partial P}\right)_{T, x_{p}}=V
$$

Partial differentiation with respect to n_{s} yields

$$
\frac{\partial^{2} G}{\partial \boldsymbol{n}_{\boldsymbol{s}} \partial P}=\left(\frac{\partial V}{\partial \mathbf{n}_{\boldsymbol{s}}}\right)_{T, x_{p}, P}=\bar{V}_{s}
$$

$\overline{V_{s}}=$ partial molar

 volume of solventSince the order of differentiation is immaterial, we have

$$
\left(\frac{\partial \mu_{s}}{\partial P}\right)_{T, x_{p}}=\bar{V}_{s}
$$

Derivation of Van't Hoff Equation

Recall the chemical potential

$$
\mu_{s}=\mu_{s}^{o}+R T \ln x_{s}
$$

$$
\left(\frac{\partial \mu_{s}}{\partial x_{s}}\right)_{T, P}=\frac{R T}{x_{s}}
$$

Note that $x_{s}=1-x_{p}$ and $\frac{d x_{s}}{d x_{p}}=-1$
Partial differentiation with respect to x_{p} yields

$$
\left(\frac{\partial \mu_{s}}{\partial x_{p}}\right)_{T, P}=\left(\frac{\partial \mu_{s}}{\partial x_{s}}\right)_{T, P}\left(\frac{d x_{s}}{d x_{p}}\right)=-\frac{R T}{1-x_{p}}
$$

Derivation of Van't Hoff Equation

Recall that for conditions of no solvent flow, $\mathrm{d} \mu=0$ and
$-\frac{R T}{1-x_{p}}$

Substitution leads to

$$
\int_{P_{o}}^{P_{o}+\pi} \bar{V}_{s} d P=R T \int_{0}^{x_{p}} \frac{d x_{p}}{1-x_{p}}
$$

Derivation of Van't Hoff Equation

If the partial molar volume is independent of pressure, we have

$$
\pi=-\frac{R T}{\bar{V}_{s}} \ln \left(1-x_{p}\right)
$$

For the very dilute solutions that obey Raoult's Law,

$$
\ln \left(1-x_{p}\right)=-x_{p}-\frac{x_{p}^{2}}{2}-\frac{x_{p}^{3}}{3}-\cdots \cong-x_{p}
$$

For the case where $n_{s} \gg n_{p}$

$$
x_{p}=\frac{\boldsymbol{n}_{p}}{\boldsymbol{n}_{\boldsymbol{s}}+\boldsymbol{n}_{\boldsymbol{p}}} \cong \frac{\boldsymbol{n}_{p}}{\boldsymbol{n}_{\boldsymbol{s}}}
$$

$$
\boldsymbol{n}_{s} \bar{V}_{s}=V_{s} \cong V(\text { solution })
$$

Derivation of Van't Hoff Equation

Substitution yields

$$
\pi=R T \frac{\boldsymbol{n}_{p}}{V(\text { solution })}
$$

Compare this expression to the ideal gas law.
Convert to concentration units of mass/volume and take the limit as concentration goes to zero

$$
\lim \left(\frac{\pi}{c}\right)=\frac{R T}{\bar{M}_{n}}
$$

$\bar{M}_{n}=$ number average molecular weight

At last, we have the Van't Hoff Equation. Note that it is applicable only at infinite dilution.

Virial Expression for Osmotic Pressure

In order to account for concentration effects in polymer solutions, a virial expression is often used.

$$
\left(\frac{\pi}{c}\right)=R T\left(\frac{1}{\bar{M}_{n}}+A_{2} c+A_{3} c^{2}+\cdots\right)
$$

$\mathrm{A}_{2}=$ second virial coefficient
$\mathrm{A}_{3}=$ third virial coefficient
Alternative expressions:

$$
\frac{\pi}{c}=\left(\frac{\pi}{c}\right)_{c=0}\left[1+\Gamma_{2} c+\Gamma_{3} c^{2}+\cdots\right]
$$

The forms are equivalent if:

$$
\frac{\pi}{c}=\left(\frac{R T}{\bar{M}_{n}}\right)+B c+C c^{2}
$$

$$
B=R T A_{2}=\left(\frac{R T}{\bar{M}_{n}}\right) \Gamma_{2}
$$

Effect of Solvent Quality on Osmotic Pressure

Θ
$\mathrm{A}_{2}>0$ for a good solvent
$A_{2}=0$ for a theta solvent $\mathrm{A}_{2}<0$ for a poor solvent
2.3.3 Cryscopy and Ebulliometry

Freezing-point depression ($\Delta \mathbf{T}_{f}$) Boiling-point elevation ($\Delta \mathbf{T}_{b}$)

$$
\left(\frac{\Delta T_{f}}{c}\right)_{c=0}=\frac{R^{2}}{\rho \Delta H_{f} \bar{M}_{n}}+A_{2} \mathbf{c} \quad\left(\frac{\Delta T_{b}}{c}\right)_{c=0}=\frac{R^{2}}{\rho \Delta H_{v} \bar{M}_{n}}+A_{2} \mathbf{C}
$$

where
$\mathrm{T}=$ freezing point or boiling point of the solvent $\rho=$ solvent density
$\Delta \mathbf{H}_{\mathrm{f}}=$ latent heat of fusion
$\Delta H_{v}=$ latent heat of vaporization
$A_{2}=$ second virial coefficient

The most sensitive thermister ; $\mathbf{1} \times 10^{-4}{ }^{\circ} \mathrm{C}$
Upper limit $\approx 40,000$

2.3.4 Vapor Pressure Osmometry

- Polymer solution and pure solvent are placed on thermistor beads.
- Solvent vapor condenses onto polymer solution.
- Temp rise of solution due to heat of evaporization.
- Vapor pressure of solution is increased to that of pure solvent.
- Temperature difference between the solution and the solvent droplet is measured as the resistance difference ΔR between the thermistor beads.

In a dilute solution, the vapor pressure of a solvent is given by Raoult's Law
where

$$
\begin{array}{ll}
P_{1}=P_{1}^{0} x_{1} & \begin{array}{l}
P_{1}=\text { partial pressure of solvent in solution } \\
P_{1}^{0}=\text { vapor pressure of pure solvent } \\
x_{1}=\text { mole fraction of solvent }
\end{array} \\
x_{1}=1-x_{2} & x_{2}=\text { mole fraction of solute } \\
P_{1}=P_{1}^{0}\left(1-x_{2}\right) & \\
\text { vapor pressure lowering }=\Delta P \equiv P_{1}^{0}-P_{1}=P_{1}^{0} x_{2}
\end{array}
$$

It is assumed that $T, \Delta H_{v}$, and $P=$ constant.
Clausius-Clapeyron equation where

$$
\frac{d P}{d T}=\frac{P \Delta H_{v}}{R T^{2}}
$$

integrated to yield

$$
\Delta \mathbf{T}=\frac{\mathbf{R T}^{2} \Delta \mathbf{P}}{\mathbf{P} \Delta \mathbf{H}_{\mathrm{v}}}
$$

Substitution of the equations
For small pressure changes, $\mathbf{P}_{\mathbf{1}}{ }^{0}=\mathbf{P}$

$$
\Delta \mathbf{T}=\frac{\mathbf{R T}^{2} \mathbf{X}_{2}}{\Delta \mathbf{H}_{\mathrm{v}}}
$$

$$
x_{2}=\frac{n_{2}}{n_{1}+n_{2}}
$$

For very small n_{2}

$$
\Delta T=\frac{\mathbf{R T}^{2} \mathbf{P}_{1}{ }^{\circ} \mathbf{X}_{2}}{\mathbf{P} \Delta \mathbf{H}_{v}}
$$

> where
$\mathrm{n}_{1}=$ number of moles of solvent
$n_{2}=$ number of moles of solute

$$
\begin{gathered}
x_{2}=\frac{n_{2}}{n_{1}} \\
\Delta T=\frac{R T^{2}}{\Delta H_{v}} \frac{n_{2}}{n_{1}}=\frac{R T^{2}}{\Delta H_{v}} \frac{\frac{w_{2}}{M_{2}}}{\frac{\mathbf{w}_{1}}{M_{1}}}=\frac{R T^{2}}{\Delta H_{v}} \frac{w_{2}}{\mathbf{w}_{1} M_{2}} M_{1}=\frac{R T^{2}}{\Delta H_{v}} \frac{m_{2}}{M_{2}} \frac{M_{1}}{1000}
\end{gathered}
$$

where $\mathrm{w}_{1}=$ weight of solvent $\mathrm{w}_{2}=$ weight of solute

$$
m_{2}=\frac{w_{2}}{\frac{w_{1}}{1000}}=\text { molality }\left(\frac{g}{\mathrm{~kg}}\right)
$$

$$
\Delta T=\frac{R^{2}}{\Delta H_{v}} \frac{\mathbf{m}_{2}}{M_{2}} \frac{M_{1}}{1000}=\frac{R^{2}}{\frac{\Delta H_{v}}{M_{1}}} \frac{\mathbf{m}_{2}}{M_{2}} \frac{1}{1000}=\frac{R^{2}}{1000 \lambda} \frac{m_{2}}{\bar{M}_{n}}
$$

Where $\lambda=$ heat of vaporization per gram of solvent

$$
\Delta \mathbf{T}=\frac{\mathbf{R T}^{2}}{1000 \lambda} \frac{\mathbf{m}}{\mathbf{M}_{\mathbf{n}}}
$$

2.3.5 Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS or MALDI-TOF)

```
N Laser (337 nm)
```

Matrix: UV absorbing $10^{4} \mathrm{x}$ molar excess

The energy of laser beam is transferred to the matrix which is partially vaporized, carrying intact polymer into the vapor phase and charging the polymer chains.

Field free drift region

All ions are rapidly accelerated to ideally the same high-kinetic energy by an electrostatic field and expelled into a field-free region (flight-tube) where they physically separate from each other based on their mass-to-charge (m / z) ratios.

Linear time-of-flight matrix-assisted laser desorption ionization mass spectrometer

Figure 2.5 MALDI mass spectrum of low-molecular-weight PMMA

2.4 Measurement of M_{w}

2.4.1 Light Scattering

1) Laser light-scattering photometer (Figure 2.7)

Partially fransmitting mirror

2) Polymer molecule in solution (and its associated solvent molecules) has a different refractive index than neat solvent
\therefore they behave as tiny lenses and scatter light
a) scan detector over a range of angles or use multiple detectors
b) measure scattered intensity as a function of angle and concentration
c) Use "Zimm" plot to extrapolate to infinite dilution and to zero degrees

$$
\frac{K c\left(1+\cos ^{2} \theta\right)}{R_{\theta}}=\frac{1}{\bar{M}_{w}}\left(1+\frac{16 \pi^{2}}{3 \lambda} \overline{s^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\right)+2 A_{2} c
$$

where

$$
\left(\begin{array}{l}
\mathrm{K}=\frac{2 \pi^{2} n_{o}^{2}\left(\frac{d n}{d c}\right)^{2}}{\lambda^{4} N_{0}} \\
n_{o}=\text { refractive index of the solvent } \\
\lambda=\text { wavelength of the incident light } \\
N_{o}=\text { Avogadro's number } \\
\frac{d n}{d c}=\text { specific refractive increment } \\
R_{\theta}=\frac{I_{0} r^{2}}{I_{o}}=\text { Rayleigh Ratio } \\
r=\text { distance from scatterer to detector }
\end{array}\right.
$$

Figure 2.6 Zimm plot of light-scattering data

$$
\frac{K c\left(1+\cos ^{2} \theta\right)}{R_{\theta}}=\frac{1}{\bar{M}_{w}}\left(1+\frac{16 \pi^{2}}{3 \lambda} \overline{s^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\right)+2 A_{2} c
$$

2.5 Viscometry

Not an absolute method
Measured at concentrations of about $0.5 \mathrm{~g} / 100 \mathrm{~mL}$ of solvent A) Viscosity Measurement

1) Table 2.2 Dilute Solution Viscosity Designations

Common Name

Relative viscosity

Specific viscosity

Reduced viscosity

Inherent viscosity

Intrinsic viscosity

IUPAC Name
Definition

$$
\begin{aligned}
& \eta_{r e l}=\frac{\boldsymbol{\eta}}{\eta_{o}}=\frac{\boldsymbol{t}}{\boldsymbol{t}_{\mathrm{o}}} \\
& \eta_{s p}=\frac{\eta-\eta_{o}}{\eta_{o}}=\frac{\boldsymbol{t}-\boldsymbol{t}_{o}}{\boldsymbol{t}_{\mathrm{o}}}=\eta_{\text {rel }}-1 \\
& \eta_{\text {red }}=\frac{\eta_{s p}}{C}=\frac{\eta_{\text {rel }}-1}{C}
\end{aligned}
$$

Viscosity number

Logarithmic
viscosity number
Limiting viscosity number
Viscosity ratio
y number

$$
\eta_{i n h}=\frac{\ln \eta_{\text {rel }}}{C}
$$

$$
[\eta]=\left(\frac{\eta_{s p}}{C}\right)_{C=0}=\left(\eta_{i n h}\right) C=\mathbf{0}
$$

Interrelationships Among Parameters

For dilute solutions,

$$
\ln \eta_{r e l}=\ln \left(\eta_{s p}+1\right) \cong \eta_{s p}-\frac{\eta_{s p}^{2}}{2}+\cdots
$$

$$
\left[\frac{\ln \eta_{r e l}}{c}\right]_{c=0}=[\eta]
$$

Compare this to

$$
\left[\frac{\eta_{s p}}{c}\right]_{c=0} \equiv[\eta]
$$

Effect of Concentration in Dilute Solution

Huggins Equation

$$
\frac{\eta_{s p}}{c}=[\eta]+k_{H}[\eta]^{2} c
$$

Kraemer Equation

$$
\frac{\ln \eta_{r e l}}{c}=[\eta]-k_{K}[\eta]^{2} c
$$

For many polymers in good solvents

$$
\mathrm{k}_{\mathrm{H}}=0.4+/-0.1 \quad \mathrm{k}_{\mathrm{K}}=0.05+/-0.05
$$

1) Basic Principles
a) Mark-Houwink-Sakurada Equation

$$
\begin{aligned}
& {[\eta]=K \bar{M}_{v}^{a}} \\
& \log [\eta]=\log K+a \log M_{v}
\end{aligned}
$$

i) K and a are characteristic of the particular solvent/polymer combination
ii) $\mathbf{M}_{\mathrm{v}}=$ Viscosity Average Molecular Weight

$$
\overline{\mathbf{M}}_{\mathrm{v}}=\left(\frac{\sum \mathbf{N}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}^{\mathrm{a}+1}}{\sum \mathbf{N}_{\mathbf{i}} \mathbf{M}_{\mathrm{i}}}\right)^{\frac{1}{\mathrm{a}}}
$$

iii) $\mathrm{a}=0.5$ (θ solvent) ~ 0.8 (good solvent)
b) Measurement of [n]
i) Make up 5-6 solutions at different concentrations of the same sample and of pure solvent
ii) measure the time it takes each of them to flow through the viscometer
iii) extrapolate to viscosity at zero concentration which gives the intrinsic viscosity

Capillary viscometers:
Ubbelohde
Cannon-Fenske
c) Measurement of [n], K and a

Plot the [n] values against the MW values from another technique and get K and a from the intercept and slope

$$
\log [\eta]=\log K+a \log M_{v}
$$

d) Determination for a polymer of known structure
i) Look up K and a in the Polymer Handbook (Table 2.3)
ii) Use the [n] values to calculate $\overline{M_{v}}$ directly

Table 2.3 Representative Viscosity-Molecular Weight Constants ${ }^{\text {a }}$

Polymer	Solvent	Temperature ${ }^{\circ} \mathrm{C}$	Molecular Weight Range X10-4	$\begin{gathered} K^{b} X \\ 10^{3} \end{gathered}$	$\mathrm{a}^{\text {b }}$
Polystyrene (atactic) ${ }^{\text {c }}$	Cyclohexane	$35^{\text {d }}$	$8-42{ }^{\text {e }}$	80	0.50
	Cyclohexane	50	4-137 ${ }^{\text {e }}$	26.9	0.599
	Benzene	25	3-61 ${ }^{\text {f }}$	9.52	0.74
Polyethylene (low pressure)	Decalin	135	3-100 ${ }^{\text {e }}$	67.7	0.67
Poly(vinyl chloride)	Benzyl alcohol	$155.4{ }^{\text {d }}$	4-35	156	0.50
	cyclohexanone	20	$7-13{ }^{\text {f }}$	13.7	1.0
Polybutadiene					
98\% cis-1,4, 2\%1,2	Toluene	30	5-50 ${ }^{\text {f }}$	30.5	0.725
$\begin{gathered} 97 \% \text { trans-1,4, 3\% } \\ 1,2 \end{gathered}$	Toluene	30	5-16 ${ }^{\text {f }}$	29.4	0.753
Polyacrylonitrile	DMFg	25	5-27 ${ }^{\text {e }}$	16.6	0.81
	DMF	25	3-100 ${ }^{\text {f }}$	39.2	0.75
Poly(MMA-co-St)					
30-7- mol \%	1-Chlorobutane	30	5-55 ${ }^{\text {e }}$	17.6	0.67
71-29 mol \%	1-Chlorobutane	30	4.8-81 ${ }^{\text {e }}$	24.9	0.63
PET	m-Cresol	25	0.04-1.2 ${ }^{\text {f }}$	0.77	0.95
Nylon 66	m-Cresol	25	1.4-5 ${ }^{\text {f }}$	240	0.61

2.6 M.W. Distribution

2.6.1 Gel Permeation Chromatography (GPC) = Size Exclusion Chromatography (SEC)

Times sequence

Gel Permeation Chromatography

A mixture of different size solute molecules is eluted through a column of porous particles. Larger molecules are swept through unhindered, while small molecules are retarded in the pores.

Partial	Total
permeation	permeation

Retention volume

Retention volume
= elution volume

$$
V_{r}=V_{0}+k V_{i}
$$

Where
$\mathbf{V}_{0}=$ Interstitial (or void) volume between porous gel particles
$V_{i}=$ Pore volume within the porous gel particles
$\mathbf{k}=$ Partition coefficient between V_{i} and the portion accessible to a given solute
$=\underset{\uparrow}{0} \sim 1$
very large molecule very small molecule
which cannot penetrate any available pore volume
which can penetrate all the available pore volume

Figure 2.10 Typical gel permeation chromatogram

Elution volume $\left(V_{r}\right)$ (counts)
Gives Polystyrene (or Poly(vinyl alcohol)) Equivalent MWs

Figure 2.12 Typical semilogarithmic calibration plot

Retention volume $\left(V_{r}\right)$ (counts)
Reference polymer: monodisperse polystyrene or poly(vinyl alcohol)
2) Universal calibration

[η] $\mathrm{M}=2.5 \mathrm{~N}_{\mathrm{A}} \mathrm{V}_{\mathrm{h}}$

Einstein viscosity relation

= universal calibration parameter
$=$ constant for all polymers for a given column, temp, and elution volume
Polymer 1 = reference polymer (e.g. polystyrene)
Polymer 2 = polymer to be fractionated
For equal elution volumes of two different polymers

$$
[\eta]_{1} \mathbf{M}_{1}=[\eta]_{2} \mathbf{M}_{2}
$$

Mark-Houwink-Sakurada relationship

$$
\begin{aligned}
& {[\eta]_{1}=\mathbf{K}_{1} \mathbf{M}_{1}^{\mathbf{a}_{1}} \quad[\eta]_{2}=\mathbf{K}_{2} \mathbf{M}_{2}^{\mathbf{a}_{2}}} \\
& \mathbf{K}_{1} \mathbf{M}_{1}^{1+a_{1}}=\mathbf{K}_{2} \mathbf{M}_{2}^{1+a_{2}} \\
& \log \mathbf{K}_{1}+\left(\mathbf{1}+\mathbf{a}_{1}\right) \mathbf{M}_{1}=\log \mathbf{K}_{2}+\left(\mathbf{1}+\mathbf{a}_{2}\right) \mathbf{M}_{2} \\
& \log \mathbf{M}_{2}=\left(\frac{1}{1+\mathbf{a}_{2}}\right) \log \left(\frac{\mathbf{K}_{1}}{\mathbf{K}_{2}}\right)+\left(\frac{1+\mathbf{a}_{1}}{\mathbf{1}+\mathbf{a}_{\mathbf{2}}}\right) \log \mathbf{M}_{1}
\end{aligned}
$$

Figure 2.11 Universal calibration for GPC
$\log ([n] M)$ is plotted with V_{r}

All polymers fit on the same curve

