Chapter 6. Free Radical Polymerization

6.1. Introduction

 Table 6. 1 Commercially Important Vinyl Polymers

6. 2 Free Radical Initiators

Four types

Peroxides and hydroperoxides

Azo compounds

Redox initiators Photoinitiators

6.2.1. Peroxides and Hydroperoxides (ROOR) (ROOH)

Thermal homolysis

Decomposition

Radical combination Wastage reaction \therefore Cage effect ² Ph• \longrightarrow Ph—Ph (confining effect of solvent molecules) Ph—C-O• + Ph• \longrightarrow Ph—C-O-Ph Induced decomposition Wastage reaction Ph—C-O-O-C-Ph + Ph• \longrightarrow Ph-C-O-O+C-Ph \longrightarrow Ph-C-O-O+C-Ph + Ph• \longrightarrow Ph-C-O-O+C-Ph

Radical stability

$$Ph - C - O = CH_{3} - CH_{3}$$

Half-lifes

1.38 h at 145°C

1.7 h at 130°C

BPO (Benzoyl peroxide)

1.4 h at 85°C

1.1 h at 85°C

No initiation of polymerization

☆ No N in polymers

Initiation of polymerization

6.2.2. Azo Compounds

AIBN (Azobisiso(butyronitrile))

Radical combination

6.2.3. Redox Initiators

Production of free radicals by one-electron transfer reactions.

Useful in low-temp polymerization and emulsion polymerization

$$Ph - C(CH_3)_2 + Fe^{2+} \longrightarrow Ph - C(CH_3)_2 + OH + Fe^{3+}$$

$$HOOH + Fe^{2+} \longrightarrow HO + OH + Fe^{3+}$$

$$O_3SOOSO_3^{-} + S_2O_3^{-2-} \longrightarrow SO_4^{-} + SO_4^{-2-} + S_2O_3^{-1}$$
Radicals in aqueous phase

6.2.4. Photoinitiators

The major advantages of photoinitiation:

The reaction is essentially independent of temp

Polymerization may be conducted even at very low temperatures

Better control of the polymerization reaction

The reaction can be stopped simply by removing the light source

6.2.5. Thermal Polymerization

Rapid formation of radicals by reaction of nonradical species

6.2.6. Electrochemical Polymerization

Radical ions : initiate free radical or ionic polymerization or both

Particularly useful for coating metal surfaces with polymer films

6.3 Techniques of Free Radical Polymerization Techniques

Method	Advantages	Disadvantages
Bulk	Simple No contaminants added	Rxn exotherm difficult to control High viscosity
Suspension	Heat readily dispersed Low viscosity Obtained in granular form	Washing and drying required Agglomeration may occur Contamination by stabilizer
Solution	Heat readily dispersed Low viscosity Used directly as solution	Added cost of solvent Solvent difficult to remove Possible chain transfer with solvent Possible environmental pollution
Emulsion	Heat readily dispersed Low viscosity High MW obtainable Used directly as emulsion. Works on tacky polymers	Contamination by emulsifier Chain transfer agents often needed Washing and drying necessary

6.4 Kinetics and Mechanism of Polymerization

Propagation

Termination

Initiation rate (R_i)

$$\mathsf{R}_{\mathsf{i}} = \frac{\mathsf{d}[\mathsf{M} \bullet]}{\mathsf{d}\mathsf{t}} = 2\mathsf{f}\mathsf{k}_{\mathsf{d}}[\mathsf{I}]$$

where

$$\begin{cases} [M\bullet] = \text{total conc of chain radicals} \\ [I] = \text{molar conc of initiator} \\ f = \text{initiator efficiency} = 0.3 \sim 0.8 \end{cases}$$

Termination rate (R_t)

$$\mathsf{R}_{t} = -\frac{\mathsf{d}[\mathsf{M}\bullet]}{\mathsf{d}t} = 2\mathsf{k}_{t}[\mathsf{M}\bullet]^{2}$$

Steady-state assumption $R_i = R_t$ $2fk_d[I] = 2k_t[M \bullet]^2 [M \bullet] = \sqrt{\frac{fk_d[I]}{k_t}}$ Propagation rate (R_p) $R_p = -\frac{d[M]}{dt} = k_p[M \bullet][M] = k_p[M] \sqrt{\frac{fk_d[I]}{k_t}}$

Average kinetic chain length (v)

= Average # of monomer units polymerized per chain initiated

$$\overline{v} = \frac{R_p}{R_i} = \frac{R_p}{R_t} = \frac{k_p [M \bullet] [M]}{2k_t [M \bullet]^2} = \frac{k_p [M]}{2k_t [M \bullet]} = \frac{k_p [M]}{2(fk_t k_d [I])^{\frac{1}{2}}}$$

$$\overline{P} = (-\frac{1}{2})$$
Disperse participants

 $\overline{DP} = \begin{cases} -\frac{1}{\nu} & \text{Disproportionation} \\ \frac{1}{2\nu} & \text{Coupling} \end{cases}$

• Gel effect, Trommsdorff effect, Norris-Smith effect

Occurs in bulk or concentrated solution polymerizations

$$\eta \uparrow \implies$$
 Chain mobility $\downarrow \implies R_{t} \downarrow \implies [M \cdot] \uparrow \implies$

$$R_{p} \uparrow \Longrightarrow$$
 Release of more heat \Longrightarrow $R_{i} \uparrow \implies$ $R_{p} \uparrow$

Polymerization of MMA in benzene 50°C benzoylperoxide

• Chain transfer reactions

Transfer of reactivity from the growing polymer chain to another species

1) C.T. to Polymer

Chain-end radical abstract a H atom from a chain

→ Chain branching

2) Backbiting : intramolecular chain transfer $\begin{array}{c} H_{2}C \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} H_{2}C \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{3} \xrightarrow{H_{2}C} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_$

Important with monomers containing allylic hydrogen, such as propylene

∴ High-mol-wt polypropylene cannot be prepared by free radical polymerization

∴ High-mol-wt PMMA can be prepared by free radical polymerization

4) C.T. to Solvent or Chain transfer agents

Transfer reaction rate

$$\mathsf{R}_{\mathsf{tr}} = \mathsf{k}_{\mathsf{tr}} \big[\mathsf{M} \bullet \big] \big[\mathsf{T} \big]$$

where T = transfer agent

Table 6.5 C_{T} for St and MMA

o Inhibitors

Added to monomers to prevent polymerization during shipment or storage

Must be removed by distillation of monomer or extraction

Alkylated Phenol

Induction periods are common even with purified monomer because of the presence of oxygen, which is, itself, an inhibitor. o Living free radical Polymerization No chain termination or chain transfer

o Atom Transfer Radical Polymerization (ATRP)

Polymerization of styrene

o Addition of a Stable Free Radical

All the chains are initiated at about the same time.

No chain termination or transfer reactions. The chains all grow to approximately the same length. Polydispersity is low.

o **Emulsion Polymerization**

where [M] = concentration of monomer in the polymer particle N = # of polymer particles

Rate of radical entry into the particle

$$\rho = \frac{R_i}{N}$$

Average kinetic chain length

$$\overline{\mathbf{v}} = \frac{\mathbf{k}_{p}[\mathbf{M}]}{\rho} = \frac{\mathbf{k}_{p}[\mathbf{M}]}{\frac{\mathbf{R}_{i}}{\mathbf{N}}} = \frac{\mathbf{k}_{p}[\mathbf{M}]\mathbf{N}}{2\mathbf{f}\mathbf{k}_{d}[\mathbf{I}]}$$
$$= \overline{\mathbf{v}}$$

$$\mathbf{N} = \mathbf{k} \left(\frac{\mathbf{R}_{i}}{\mu}\right)^{0.4} \left(\mathbf{a}_{s} [\mathbf{E}]\right)^{0.6}$$

DP

where $\begin{cases} k = constant (0.37~0.53) \\ \mu = rate of increase in the volume of a polymer particle \\ [E] = concentration of micellar emulsifier \\ a_s = interfacial area occupied by an emulsifier molecule in the micelles \end{cases}$

 $\mathbf{N} \propto [\mathbf{I}]^{0.4}, [\mathbf{E}]^{0.6}$ $\mathbf{R}_{p} \propto [\mathbf{I}]^{0.4}, [\mathbf{E}]^{0.6}$ $\overline{\mathbf{DP}} = \overline{\mathbf{v}} \propto [\mathbf{I}]^{-0.6}, [\mathbf{E}]^{0.6}$

6.5. Stereochemistry of Polymerization

Steric and electrostatic interactions are responsible for stereochemistry of free radical polymerization

1) Interaction between Terminal unit & Monomer

Mirror approach

etc

Isotactic polymer

Nonmirror approach

etc

Syndiotactic polymer

2) Interaction between Terminal unit & Penultimate unit

P: bulkiest group

Syndiotactic

If terminal carbon has sp² planar structure,

Interaction between terminal unit & monomer is dominant factor

If terminal carbon has sp³ hybridization,

Interaction between penultimate unit & terminal unit is dominant factor

Stereoregularity \uparrow as T \downarrow

Free radical polymerization of MMA at T < 0 °C

Crystalline polymer Syndiotactic

(Expect) As size of substituent groups 1, stereoregularity 1

(Experiment) bulkier substituent

Less syndiotactic than PMMA under the same conditions

6.6 Polymerization of Dienes

6.6.1. Isolated Dienes

Cooperative addition of one double bond to the other of the monomer

Cyclic polymer

5- or 6-membered ring

Cyclopolymerization:

Formation of a cyclic structural unit in a propagation step

Cyclopolymerization of divinylformal

Highly crosslinked polymers

Diallyl phthalate

Used for manufacturing electrical or electronics items (circuit boards, insulators, television components, etc) preimpregnating glass cloth or fiber for fiber-reinforced plastics

Used for applications requiring good optical clarity (eyeware lenses, camera filters, panel covers, and the like)

Diethylene glycol bis(allyl carbonate)

6.6.2. Conjugated Dienes

20%

CH₂=C-CH=CH₂ CH₃

10%

As T↑ , cis-1,4 ↑

		percent			
Monomer	- Polymerization Temperature(℃)	cis-1,4	trans-1,4	1,2	3,4
Butadiene	-20	6	77	17	-
	20	22	58	20	-
	100	28	51	21	-
	233	43	39	18	-
Isoprene	-20	1	90	5	4
	-5	7	82	5	5
	50	18	72	5	5
	100	23	66	5	6
	257	12	77	2	9
Chloroprene	-46	5	94	1	0.3
	46	10	81-86	2	1
	100	13	71	2.4	2.4

Table 6.6 Structures of Free Radical-Initiated Diene Polymers

6.7 Monomer Reactivity

 $k_p: -C_6H_5 < -CN < -COOCH_3 < -CI < -OCOCH_3$

o Three factors in monomer reactivity

1) Resonance stabilization of free radicals: $k_p \downarrow$

$$-C_6H_5 > -CN > -COOCH_3 > -CI > -OCOCH_3$$
Reactive monomerStable monomerStable radicalReactive radical

Inverse relationship between monomer reactivity and k_p Radical reactivity is the major factor.

2) Polarization of double bond by substituents: $k_p \downarrow$

Extreme polarization prevents free radical polymerization

Resonance stabilization of the radical by hyperconjugation and steric hindrance

Overlap of p-orbital with σ **bonds**

o Free energy of polymerization

 $\Delta \mathbf{G}_{\mathbf{p}} = \Delta \mathbf{H}_{\mathbf{p}} - \mathbf{T} \Delta \mathbf{S}_{\mathbf{p}}$

- $\Delta H < 0$: exothermic, π -bond in monomer $\rightarrow \sigma$ -bond in polymer favorable
- ∆S < 0 : monomer → covalently bonded chain structure unfavorable ∴ Degree of freedom (randomness) ↓
- (1) The higher the resonance stabilization of monomer, I Δ HI \downarrow
- (2) Steric strain in polymer, $I \Delta H \downarrow$
- (3) Decrease in H-bonding or dipole interaction on polymerization, I Δ HI \downarrow

Table 6.7 $\triangle H$ and $\triangle S$ of Polymerization

	- △H	-∆ S
Monomer	(<i>kJ/mol</i>)	(J/ <i>mol</i>)
Acylonitrile	77	109
1,3-Butadiene	78	89
Ethylene	109	155
Isoprene	75	101
Methyl methacrylate	65	117
Propylene	84	116
Styrene	70	104
Tetrafluoroethylene	163	-
Vinyl acetate	90	-
Vinyl chloride	71	-

o Polymerization-depolymerization Equilibrium

At
$$T_c$$

 $k_n[M \bullet][M] = k_{dn}[M \bullet]$

Equilibrium constant

$$\mathbf{K} = \frac{\left[\mathbf{M} \bullet\right]}{\left[\mathbf{M} \bullet\right]\left[\mathbf{M}\right]_{e}} = \frac{1}{\left[\mathbf{M}\right]_{e}} = \frac{\mathbf{k}_{p}}{\mathbf{k}_{dp}}$$

where [M]_e = equilibrium monomer concentration

 $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \mathbf{K}$

where $\Delta G^{\circ} = \Delta G$ in standard state (pure monomer or 1-M solution monomer, pure polymer or 1-M repeating units of polymer)

At equilibrium

 $\Delta \mathbf{G} = 0$ $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T}_{c} \Delta \mathbf{S}^{\circ} = -\mathbf{R}\mathbf{T}_{c} \mathbf{In} \mathbf{K} = \mathbf{R}\mathbf{T}_{c} \mathbf{In} \mathbf{[M]}_{e}$ $\Rightarrow \quad \mathbf{T}_{c} = \frac{\Delta \mathbf{H}^{\circ}}{\Delta \mathbf{S}^{\circ} + \mathbf{R} \mathbf{In} \mathbf{[M]}_{e}} \quad \text{or} \quad \mathbf{In} \mathbf{[M]}_{e} = \frac{\Delta \mathbf{H}^{\circ}}{\mathbf{R}\mathbf{T}_{c}} - \frac{\Delta \mathbf{S}^{\circ}}{\mathbf{R}}$

Table 6.8 T_c of Pure Liquid Monomers

Monomer	7 _c (℃)	
1,3-Butadiene	585	
Ethylene	610	A I IQ
Isobutylene	175	$\mathbf{T}_{c} = \frac{\Delta \mathbf{H}^{2}}{\mathbf{A} \mathbf{C}^{2} + \mathbf{D} \ln[\mathbf{M}]}$
Isoprene	466	$\Delta \mathbf{S}^{*} + \mathbf{R} \ln[\mathbf{W}]_{e}$
Methyl methacrylate	198	
α -Methylstyrene	66	
Styrene	395	
Tetrafluoroethylene	1100	
		→ -△H = 35 <i>k</i> J/ <i>mol</i> T _c = 66 °C

Resonance stabilization Steric strain in polymer

6.8 Copolymerization

where k_{11} and k_{22} : self-propagation rate constant

k₁₂ and k₂₁ : cross-propagation rate constant

o Steady-state assumption for $[M_1^{\bullet}]$ and $[M_2^{\bullet}]$

$$k_{12}[M_1^{\bullet}][M_2] = k_{21}[M_2^{\bullet}][M_1]$$

o Rate of consumption of M_1 and M_2

$$-\frac{d[M_1]}{dt} = k_{11} [M_1 \bullet] [M_1] + k_{21} [M_2 \bullet] [M_1$$
$$-\frac{d[M_2]}{dt} = k_{12} [M_1 \bullet] [M_2] + k_{22} [M_2 \bullet] [M_2]$$

 $\left[\mathbf{M}_{1} \bullet\right] = \frac{\mathbf{k}_{21} \left[\mathbf{M}_{1}\right] \left[\mathbf{M}_{2} \bullet\right]}{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{$

o Instant composition of copolymer

$$\frac{\mathbf{d}[\mathbf{M}_{1}]}{\mathbf{d}[\mathbf{M}_{2}]} = \frac{[\mathbf{M}_{1}]}{[\mathbf{M}_{2}]} \left(\frac{\mathbf{k}_{11} [\mathbf{M}_{1} \bullet] + \mathbf{k}_{21} [\mathbf{M}_{2} \bullet]}{\mathbf{k}_{12} [\mathbf{M}_{1} \bullet] + \mathbf{k}_{22} [\mathbf{M}_{2} \bullet]} \right)$$

o Monomer reactivity ratio

$$\frac{\mathbf{k}_{11}}{\mathbf{k}_{12}} = \mathbf{r}_1 \qquad \frac{\mathbf{k}_{22}}{\mathbf{k}_{21}} = \mathbf{r}_2$$

o Copolymer (composition) equation $\frac{d[M_1]}{d[M_2]} = \frac{[M_1]}{[M_2]} \left(\frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]} \right)$

o Instantaneous composition of feed and polymer

$$\begin{cases} f_{1} = \text{mole fraction of } M_{1} \text{ in the feed} \\ f_{2} = \text{mole fraction of } M_{2} \text{ in the feed} \\ F_{1} = \text{mole fraction of } M_{1} \text{ in the copolymer} \\ F_{2} = \text{mole fraction of } M_{2} \text{ in the copolymer} \\ F_{2} = \text{mole fraction of } M_{2} \text{ in the copolymer} \\ \hline M_{1} = 1 - F_{2} = \frac{d[M_{1}]}{d[M_{1}] + [M_{2}]} \\ \frac{d[M_{1}]}{d[M_{2}]} = \frac{[M_{1}]}{[M_{2}]} \left(\frac{r_{1}[M_{1}] + [M_{2}]}{[M_{1}] + r_{2}[M_{2}]}\right) \\ \frac{d[M_{1}]}{d[M_{2}]} = \frac{F_{1}}{(M_{2}]} = \frac{F_{1}}{1 - F_{1}} \\ \frac{I - F_{1}}{[M_{2}]} = \frac{f_{1}}{f_{2}} \left(\frac{r_{1}f_{1} + f_{2}}{f_{1} + r_{2}f_{2}}\right) \\ \frac{1 - F_{1}}{F_{1}} = \frac{f_{1}}{F_{1}} - 1 = \frac{f_{2}}{f_{1}} \left(\frac{f_{1} + r_{2}f_{2}}{r_{1}f_{1} + f_{2}}\right) \\ \frac{1}{F_{1}} = \frac{f_{2}}{f_{1}} \left(\frac{f_{1} + r_{2}f_{2}}{r_{1}f_{1} + f_{2}}\right) + 1 = \frac{r_{1}f_{1}^{2} + 2f_{1}f_{2} + r_{2}f_{2}^{2}}{r_{1}f_{1}^{2} + f_{1}f_{2}} \\ \hline F_{1} = \frac{r_{1}f_{1}^{2} + f_{1}f_{2}}{r_{1}f_{1}^{2} + 2f_{1}f_{2} + r_{2}f_{2}^{2}} \end{cases}$$

$$\mathbf{F} = \frac{\mathbf{F}_1}{\mathbf{F}_2} = \frac{\mathbf{d}[\mathbf{M}_1]}{\mathbf{d}[\mathbf{M}_2]} \qquad \qquad \mathbf{f} = \frac{\mathbf{f}_1}{\mathbf{f}_2} = \frac{[\mathbf{M}_1]}{[\mathbf{M}_2]}$$

$$\frac{\mathbf{d}[\mathbf{M}_1]}{\mathbf{d}[\mathbf{M}_2]} = \frac{[\mathbf{M}_1]}{[\mathbf{M}_2]} \left(\frac{\mathbf{r}_1[\mathbf{M}_1] + [\mathbf{M}_2]}{[\mathbf{M}_1] + \mathbf{r}_2[\mathbf{M}_2]} \right)$$

$$\mathsf{F} = \mathsf{f}\left(\frac{\mathsf{r}_1\mathsf{f} + \mathsf{1}}{\mathsf{f} + \mathsf{r}_2}\right) = \frac{\mathsf{r}_1\mathsf{f}^2 + \mathsf{f}}{\mathsf{f} + \mathsf{r}_2}$$

$$\mathbf{fF} + \mathbf{r}_{2}\mathbf{F} = \mathbf{r}_{1}\mathbf{f}^{2} + \mathbf{f}$$

$$\frac{\mathbf{f}(\mathbf{1} - \mathbf{F})}{\mathbf{F}} = \mathbf{r_2} - \left(\frac{\mathbf{f^2}}{\mathbf{F}}\right)\mathbf{r_1}$$

$$\mathbf{F}_{1} = \frac{\mathbf{r}_{1}\mathbf{f}_{1}^{2} + \mathbf{f}_{1}\mathbf{f}_{2}}{\mathbf{r}_{1}\mathbf{f}_{1}^{2} + \mathbf{2}\mathbf{f}_{1}\mathbf{f}_{2} + \mathbf{r}_{2}\mathbf{f}_{2}^{2}}$$

1) $r_1 = r_2 = 1$

No preference for homopolymerization or copolymerization

Random copolymer

 $F_1 = f_1$

e.g. M_1 = ethylene M_2 = vinyl acetate r_1 = 0.97 r_2 = 1.02

2) $\mathbf{r}_1 = \mathbf{r}_2 = \mathbf{0}$

Alternating copolymer

e.g. M_1 = styrene M_2 = maleic anhydride r_1 = 0.041 r_2 = 0.01

3) $0 < r_1, r_2 < 1$

More common

e.g. $M_1 = styrene$ $M_2 = methyl methacrylate$ $r_1 = 0.52$ $r_2 = 0.46$

Azeotropic copolymerization

$$\begin{aligned} \frac{d[M_1]}{d[M_2]} &= \frac{[M_1]}{[M_2]} \\ \frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]} &= 1 \end{aligned} \qquad \begin{aligned} \frac{d[M_1]}{d[M_2]} &= \frac{[M_1]}{[M_2]} \left(\frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]}\right) \\ \frac{[M_1]}{[M_2]} &= \frac{1 - r_2}{1 - r_1} \end{aligned} \qquad \begin{aligned} f_1 &= \frac{1 - r_2}{2 - r_1 - r_2} \end{aligned}$$

4) 1 << r_1 and r_2 << 1

Essentially homopolymer

e.g. M_1 = styrene M_2 = vinyl acetate r₁ = 55 r₂ = 0.01 M_1 = styrene M_2 = vinyl chloride r₁ = 17 $r_2 = 0.02$ 5) $r_1 \cdot r_2 = 1$ Ideal copolymerization $\frac{\mathbf{k}_{11}}{\mathbf{k}_{12}} = \frac{\mathbf{k}_{21}}{\mathbf{k}_{22}}$ cf. $r_1 = r_2 = 1$ Real random copolymerization The more r_1 and r_2 diverge, the less random $\mathbf{F}_{1} = \frac{\mathbf{r}_{1}\mathbf{f}_{1}^{2} + \mathbf{f}_{1}\mathbf{f}_{2}}{\mathbf{r}\mathbf{f}^{2} + 2\mathbf{f}\mathbf{f}_{1} + \mathbf{r}\mathbf{f}_{2}^{2}}$ $M_1 = MMA$ $M_2 = vinyl chloride$ e.g. r₁ = 10 $r_2 = 0.1$ $F_{1} = \frac{r_{1}f_{1}^{2} + f_{1}f_{2}}{r_{1}f_{1}^{2} + 2f_{1}f_{2} + \frac{f_{2}^{2}}{r_{1}}} = \frac{r_{1}^{2}f_{1}^{2} + r_{1}f_{1}f_{2}}{r_{1}^{2}f_{1}^{2} + 2r_{1}f_{1}f_{2} + f_{2}^{2}} = \frac{r_{1}f_{1}(r_{1}f_{1} + f_{2})}{(r_{1}f_{1} + f_{2})^{2}} = \frac{r_{1}f_{1}}{r_{1}f_{1} + f_{2}}$ $\frac{P_{1}}{P_{1}+P_{2}} = \frac{X_{1}P_{1}^{\circ}}{X_{1}P_{1}^{\circ}+X_{2}P_{2}^{\circ}} = \frac{X_{1}\frac{P_{1}^{\circ}}{P_{2}^{\circ}}}{X_{1}\frac{P_{1}^{\circ}}{P_{2}^{\circ}}+X_{2}}$

cf. **Ideal solution**

M ₁	M ₂	r ₁	r ₂	Temperature(C)
Styrene	Methyl methacrylate	0.52	0.46	60
Styrene	Acrylonitrile	0.40	0.04	60
Styrene	Vinyl acetate	55	0.01	60
Styrene	Maleic anhydride	0.041	0.01	60
Styrene	Vinyl chloride	17	0.02	60
Styrene	1,3-Butadiene	0.58	1.35	50
Styrene	Isoprene	0.54	1.92	80
Methyl methacylate	Vinyl chloride	10	0.1	68
Methyl methacylate	Vinyl acetate	20	0.015	60
Methyl methacylate	Acrylonitrile	1.20	0.15	60
Methyl methacylate	1,3-Butadiene	0.25	0.75	90
Ethylene	Tetrafluoroethylene	0.38	0.1	25
Ethylene	Acrylonitrile	0	7	20
Ethylene	Vinyl acetate	0.97	1.02	130

Table 6.9 Reactivity Ratios

 f_1

Q-e Scheme (Alfrey-Price Treatment)

$$k_{12} = P_1 Q_2 \exp(-e_1 e_2)$$

where
$$\begin{cases} P_1 = reactivity \text{ of radical } M_1 \bullet \\ Q_2 = reactivity \text{ of monomer } M_2 \\ e_1 = polarity \text{ of monomer } M_1 \\ e_2 = polarity \text{ of monomer } M_2 \end{cases}$$

$$\mathbf{r}_{1} = \frac{\mathbf{k}_{11}}{\mathbf{k}_{12}} = \frac{\mathbf{P}_{1}\mathbf{Q}_{1}\exp(-\mathbf{e}_{1}\mathbf{e}_{1})}{\mathbf{P}_{1}\mathbf{Q}_{2}\exp(-\mathbf{e}_{1}\mathbf{e}_{2})} = \left(\frac{\mathbf{Q}_{1}}{\mathbf{Q}_{2}}\right)\exp[-\mathbf{e}_{1}(\mathbf{e}_{1}-\mathbf{e}_{2})]$$

$$\mathbf{r}_2 = \left(\frac{\mathbf{Q}_2}{\mathbf{Q}_1}\right) \exp\left[-\mathbf{e}_2\left(\mathbf{e}_2 - \mathbf{e}_1\right)\right]$$

Styrene: standard

Q = 1.00 Resonance factor (+ steric factor) **e** = - 0.80

Polarity factor

- + : electron-withdrawing group
- : electron-donating group

Table 6.10 Reactivity (Q) and Polarity (e) of Monomer

Monomer	Q	е
1-vinyInaphthalene	1.94	-1.12
p- <mark>Nitro</mark> styrene	1.63	0.39
p-Methoxystyrene	1.36	-1.11
Styrene	1.00	-0.80
Methyl methacrylate	0.74	0.40
Acrylonitrile	0.60	1.20
Methyl acrylate	0.42	0.60
Vinyl chloride	0.044	0.20
Vinyl acetate	0.026	-0.22

Each radical has about twice as much tendency to react with its opposite monomer

Copolymerization of styrene and maleic anhydride

Strong tendency toward alternation (r_1 and $r_2 = \sim 0$)

1) Polar effects in the transition state

Electron transfer

Nonbonded resonance form

2) Formation of Charge-transfer complexes between comonomers

Homopolymerization of charge-transfer complex

~ $(DA)_n D^+..A^- + D^+..A^- \longrightarrow ~ (DA)_{n+1} D^+..A^-$

charge-transfer complex

<Evidence>

(1) R_p maximum when monomer composition ratio = 1:1

maximum conc. of donor-acceptor complex

(2) Alternation is independent of monomer feed ratios, and other reactive monomers included with the feed fail to react while alternating copolymer is forming

(3) R_p is enhanced by addition of Lewis acids, which increase the acceptor properties of one of the monomers

(4) Chain transfer agents have little effect on the mol. wt. of the copolymer

Other compounds that undergo free radical-initiated copolymerization with vinyl monomers are CO and SO₂

