Problem Set \#2

15.-16. Hiemenz and Lodge, Chapter 2, Problems 1, 2, 4
17. Given a poly(methyl methacrylate) molecule with $\mathrm{M}=500,000$, estimate (to one significant figure) how big it could possibly be in physical extent; how small could it be; what its likely average characteristic size would be.
18. Proton NMR is used to attempt to quantify the molecular weight of a poly(ethylene oxide) molecule with methyoxy end groups at each terminus. If the integration of the methyl protons relative to the methylene protons gave a ratio of $1: 20$, what can you say about the molecular weight?
20. What would be M_{w} and M_{n} for a sample obtained by mixing 10 g of polystyrene $\left(\mathrm{M}_{\mathrm{w}}=\right.$ $\left.100,000, M_{n}=70,000\right)$ with 20 g of another polystyrene $\left(\mathrm{M}_{\mathrm{w}}=60,000, \mathrm{M}_{\mathrm{n}}=20,000\right)$?
21. What would M_{w} and M_{n} be for an equimolar mixture of tetradecane and decane? (Ignore isotope effects).
22. Show the reaction sequence and the structure of the resulting polymer from the polycondensation of these two monomers; note that the reaction (a) has two distinct steps, and that (b) is base-catalyzed.
(a)

(b)

