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APPENDIX

1. Series Expansions

Many common functions (such as sin x, cos x, ex, ln(1+x) ...) can be represented by

power series, i.e., a sum of terms with increasing powers of the relevant argument x.  Such series

are useful in allowing the function itself to be replaced by an algebraically simple approximation

appropriate in some limit (e.g., x→0, x→1, x→∞). These series approximations can be looked

up in many handbooks, but they can also often be derived from the McLaurin series. A function

f(x) is said to be analytic if all derivatives (first, second, third...) exist over the relevant range of

x.  The McLaurin series representation of an analytic function  f(x) is given by

f(x) =
i=1

∞
∑
1
i!
dif
dxi
 

 
 

 

 
 
i=0
xi (A.1.1)

where the ith derivative of f(x) is to be evaluated at i = 0, and where i factorial is i! = i x (i–1) x

(i–2)... x 1. By definition, 0!  = 1.

As an example, consider ex, and recall that d(ex)/dx = ex. Therefore from eq A.1.1

ex =
1
0!
e(0)x0 +

1
1!
e(0)x1 +

1
2!
e(0 )x2 + ...

= 1 + x +
1
2!
x2 +

1
3!
x3 + ...

(A.1.2)

Series expansions for trigonometric functions can also be readily obtained, recalling that

d(sin x)/dx = cos x, d(cos x)/dx = – sin x, sin 0 = 0, and cos 0 = 1:
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sin x =
1
0!
sin(0)x0 +

1
1!
cos(0)x1 −

1
2!
sin(0)x2 + ...

= x −
1
3!
x3 +

1
5!
x5 + ...

(A.1.3)

cos x =
1
0!
cos(0)x0 −

1
1!
sin(0)x1 −

1
2!
cos(0)x2 + ...

= 1 −
1
2!
x2 +

1
4!
x4 + ...

(A.1.4)

The natural logarithm of (1+x) where |x| < 1 also arises often. Recall that d(lnx)/dx = 1/x, and

that d(x–i)/dx = –ix–(i+1):

ln(1+ x) =
1
0!
ln(1+ 0)x0 +

1
1!

1
(1 + 0)

x1 −
1
2!

1
(1 + 0)2

x2 + ...

= x −
1
2
x2 +

1
3
x3 + ...

(A.1.5)

Finally, when f(x) = (1+x)n we have

(1 + x)n =
1
0!
(1 + 0)nx0 +

1
1!
n(1 + 0)n−1x1 +

1
2!
n(n −1)(1+ 0)n−2 x2 + ...

= 1 + nx +
1
2!
n(n −1)x2 +

1
3!
n(n −1)(n − 2)x3 + ...

(A.1.6)

These results can be readily extended to related functions, for example by replacing x with –x,

ax, or a complex number z.
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2. Summation Formulae

These arise in several contexts, especially molecular weight distributions. For example,

let xi be the mole fraction of i-mer in a polycondensation that follows the most probable

distribution (eq 2.4.1),

xi = (1 − p) pi−1 (A.2.1)

where p is the probability that a monomer has reacted. Are we sure that this distribution is

normalized, that is

€ 

xi
i=1

∞

∑ = 1 = (1− p) pi−1
i=1

∞

∑  ?

Comparison with the distribution expression therefore requires that

pi
i=0

∞
∑ =

1
1 − p

(A.2.2)

(Note an important but subtle point: the mole fraction of i-mer only makes sense for i ≥ 1, but the

summation above runs from i = 0. This is because the sum of pi–1 starting from i=1 is the same as

the sum of pi starting from i=0, and the solution is easier to obtain in the latter case). To show

that this is, in fact, correct, consider a slightly different, finite sum:

S1 = pi
i=0

n
∑ = 1+ p + p2 + p3 + ... + pn (A.2.3)

If we multiply S1 by p and subtract it from S1, we have a term-by-term cancellation:
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S1 − pS1 = (1+ p + p2 + ... + pn ) − (p + p2 + p3 + ... + pn+1)

= 1− pn+1
(A.2.4)

and therefore

S1 =
1− pn+1

1 − p

=
1

1− p
as n→ ∞ (and assuming p < 1)

(A.2.5)

Of course, for the polymerization case p will always be < 1.

To obtain the number average degree of polymerization, we required the related

summation (eq 2.4.4)

S2 = i pi−1
i=1

∞
∑ (A.2.6)

The trick here is to recognize ipi-1 as the derivative of pi with respect to p, and that the derivative

with respect to p can be taken outside the summation:

S2 =
dpi

dpi=1

∞
∑ =

d
dp

pi
i=1

∞
∑

 

 
  

 
 =

d
dp

pi
i= 0

∞
∑

 

 
  

 
 −1

 

 
  

 
 

=
d
dp
(S1 −1) =

d
dp

1
1 − p
 

 
  

 
=

1
(1 − p)2

(A.2.7)

Similarly, on the way to obtaining the weight average degree of polymerization we encountered

the following sum:
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S3 = i2 pi−1
i=1

∞
∑ (A.2.8)

and this can be evaluated using the same "derivative trick":

i2 pi−1
i=1

∞
∑ =

d
dp

i pi
i=1

∞
∑

 

 
  

 
 =

d
dp

p i pi−1
i=1

∞
∑

 

 
  

 
 

=
d
dp

pS2( ) =
d
dp

p
(1 − p)2
 

 
  

 
 =

(1− p)2 + 2(1 − p)p
(1 − p)4

=
1 + p
(1 − p)3

(A.2.9)

3. Transformation to Spherical Coordinates

In situations where we need to integrate something over all space, and there is no

preferred direction, a transformation to spherical coordinates can be extremely useful. A prime

example occurred in Chapter 6, where we convert the Gaussian distribution function for the end-

to-end vector into the distribution function for the end-to-end distance.   Another instance arose

in Chapter 8, in considering the form factor for an arbitrary particle.

Suppose we wish to find the integral over all space of some function of f(x,y,z):

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫ f(x,y,z) dx dy dz

There are two steps required to transform this integral into spherical coordinates: transform

f(x,y,z) itself, and transform the volume element dx dy dz.  These steps are facilitated by the

coordinate axes below.
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An arbitrary point (x,y,z) is represented by a distance from the origin, r, an angle away from the

x axis in the x-y plane, θ, and an angle away from the z axis, φ: (r,θ,φ).  From the figure it can be

seen that

x = r sin φ cosθ, y = r sinφ sin θ, z = r cosφ (A.3.1)

These expressions can be substituted directly into f(x,y,z) to obtain f(r,θ,φ). Note also that

x2 + y2 + z2 = r2 sin2 φ[cos2 θ + sin2 θ]+ cos2 φ( )

= r2 sin2 φ + cos2 φ( ) = r2
(A.3.2)

Thus, in the case where f(x,y,z) can be written as f(x2+y2+z2), as is the case for the Gaussian

distribution, then f(r,θ,φ) becomes simply f(r).

x

y

z

θ

φ

(x,y,z)

r

x

y

z

dr

r sinφ dθ

r dφ
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The volume element dx dy dx is now replaced by a volume element with sides dr, r dφ,

and r sinφ  dθ, as shown in the figure.  For a function such as the Gaussian which is only a

function of r, the integral over all space can be reduced to a single integral:

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫ f(x,y,z) dx dy dz =

0

π
∫

0

2π
∫

0

∞
∫ f(r) r2 sin φ dr dθ dφ

=
0

∞
∫ f(r) r2dr

0

π
∫

0

2π
∫ sinφ dθ dφ =

0

∞
∫ f(r) r2dr 2π(− cosφ) 0

π( )

= 4π
0

∞
∫ f(r) r2dr

(A.3.3)

4. Some Integrals of Gaussian Functions

A common class of integrals that arose for example in Chapter 6 are these:

In = xn exp(−ax2) dx
0

∞
∫ (A.4.1)

where n is an integer and a is a positive number.  The results are quite simple, and can of course

be looked up in any table of integrals, but it is actually instructive to work out the answers. In so

doing, we will utilize the transformation to spherical coordinates just described, as well as use

the two most common methods for simplifying integrals: change of variable and integration by

parts.

The hardest one to do is actually the first, namely I0. All of the higher powers can be

reduced back to this one, as we shall see.  We begin by taking I0
3, and recognizing it can be

written as the product of the same integrals along x, y, and z:
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I03 = exp(−ax2 ) dx
0

∞
∫

 

 
 

 

 
 
3

= exp(−ax2) dx
0

∞
∫

 

 
 

 

 
 exp(−ay2) dy
0

∞
∫

 

 
 

 

 
 exp(−az2) dz
0

∞
∫
 

 
 

 

 
 

=
0

∞
∫

0

∞
∫ exp(−a[x2 + y2 + z2 ]) dxdydz
0

∞
∫

=
1
8 −∞

∞
∫

−∞

∞
∫ exp(−a[x2 + y2 + z2]) dxdydz

−∞

∞
∫

(A.4.2)

The last step was allowed because the argument of I0 (and In for all even values of n) is an even

function, that is one for which f(x)  =  f(–x). The integral of even function from 0 to ∞ is just half

the integral from –∞ to ∞.  Now the integrals extend over all of space, and we make the

transformation to spherical coordinates r, θ, φ.  This is particularly simple in this case, because

the argument of the integral only depends on r2 = x2+y2+z2:

1
8 −∞

∞
∫

−∞

∞
∫ exp(−a[x2 + y2 + z2]) dxdydz

−∞

∞
∫ =

1
8
4π r2 exp(−ar2 )dr
0

∞
∫

=
π
2
I2

(A.4.3)

So far, this is not looking promising; we only have a simple relation between I0
3 and I2. However,

let's attack I0 directly by integration by parts:

u dv = uv
a

b
∫

a

b
− v du
a

b
∫ (A.4.4)

where we make the substitutions u = exp(-ax2), v = x, so du = -2axexp(-ax2)dx and dv = dx:
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I0 = exp(−ax2 )dx = exp(−ax2 )x
0

∞
∫

0

∞
− (−2a)x2 exp(−ax2)dx
0

∞
∫

= 0 + 2 a I2

(A.4.5)

Thus there is another simple relation between I0 and I2. Combining these, we see

I03 =
π

2
I2 =

π

4a
I0 (A.4.6)

or

I0 =
π

2 a
; I2 =

π

4a a
(A.4.7)

Continuing along the sample line, we apply integration by parts to I2,with u = exp(-ax2) again but

now v = x3/3 (so dv = x2dx):

I2 = x2 exp(−ax2)dx = exp(−ax2 ) x
3

30

∞
∫

0

∞

− (− 2a
3
)x4 exp(−ax2 )dx

0

∞
∫

= 0 + 2a
3
I4

(A.4.8)

In this way, one can arrive at the general formula for even n:

In =
(n −1)(n − 3)...(1)

2 (2a)n / 2
π

a
, even n (A.4.9)

The situation for odd n can be approached by a change of variable, e.g. u = x2, du = 2xdx:
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I1 = x exp(−ax2) dx =
1
20

∞
∫ exp(−au) du

0

∞
∫

=
1
2

−1
a

 
 

 
 
exp(−au) 0

∞ =
1
2a

(A.4.10)

and so forth. The general result for odd n becomes:

In =
1
2
(n −1)/ 2( )! 1

a(n +1) /2
, odd n (A.4.11)

5. Complex Numbers

A complex number z can always be written as the sum of two parts, referred to as the

"real part", a, and the "imaginary part", i b:

z  =  a + i b (A.5.1)

where a and b are real numbers and i = −1 .  The rules for addition and subtraction of two

complex numbers are straightforward:

z1 ±  z2  =  (a1+ i b1) ± (a2 + i b2)  =  (a1 ±  a2) + i (b1 ± b2) (A.5.2)

Multiplication also follows directly, recalling that i2 = –1.

z1 z2  =  (a1 + i b1) (a2 + i b2)  =  (a1 a2) + i (b1 a2) + i (a1 b2) – (b1b2)

=  (a1 a2 – b1 b2) + i (a1 b2 + b1 a2). (A.5.3)
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Division is a little more complicated, and is helped by introduction of the complex conjugate of a

complex number, z*, which is obtained by replacing i with – i.

z  =  a1 + i b1,    z*  =  a1 – i b1 (A.5.4)

The product of a complex number and its complex conjugate is always purely real:

z z* = a1 a1 + b1 b1 (A.5.5)

To divide by a complex number, it is helpful to multiply numerator and denominator by the

complex conjugate of the denominator, thereby restricting complex numbers to the numerator

alone:

z1
z2

=
a1 + ib1
a2 + ib2

=
a1 + ib1
a2 + ib2

a2 − ib2
a2 − ib2

=
a1a2 + b1b2 + i(b1a2 − a1b2)

a22 + b22
=

a1a2 + b1b2
a22 + b22

+ i b1a2 − a1b2
a22 + b22

(A.5.6)

As a complex number is represented by a pair of numbers (a,b) it can also be mapped

uniquely onto a point on a Cartesian coordinate system, with horizontal axis reflecting the real

part and the vertical axis representing the imaginary part.  Similarly, as the following figure

illustrates, a complex number can be viewed as a vector from the origin, with a length given by

A and a direction specified by the angle θ:

A = a2 + b2

tanθ =
b
a

(A.5.7)
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The standard trigonometric relations apply, such that

a = Acosθ
b = Asinθ (A.5.8)

and therefore any complex number can be written as

z  =  A cos θ + i A sin θ. (A.5.9)

Recall the series expansions of ex, cos x, and sin x given above, and consider the complex

number eix:

eix = 1+ ix +
1
2!
(ix)2 +

1
3!
(ix)3...

= 1− 1
2!
x2 +

1
4!
x4... + i x − 1

3!
x3 +

1
5!
x5... 

 
 
 

= cosx + i sinx

(A.5.10)

Real axis

(a,b)
Imaginary axis

a

A

b

θ
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Thus any complex number can also be written z  = A eiθ.  This particular form is extremely

useful in various mathematical operations, for example taking powers and roots:

zn = A eiθ( )n = An einθ (A.5.11)

The product of z and its complex conjugate z* is easily seen to be A2

 z z * = A eiθ( ) A e−iθ( ) = A2 e(iθ− iθ) = A2 (A.5.12)

In this way the product of a complex number and its conjugate is analogous to taking the dot

product of a vector with itself; the result is a real number (scalar), equal to the length squared.


