PS \#8

64. Solution:

Based on styrene, the reactivity sequence of monomers is:
Methacrylonitrile>Acrylonitrile>2-Vinyl pyridine>Styrene>Vinylidene chloride $>1,2$-bichloropropene-2 $>$ Vinyl chloride $>$ Allyl acetate

For methyl methacrylate:
2-Vinyl pyridine $>$ Methacrylonitrile $>$ Methyl methacrylate $>$ Acrylonitrile $>$ Vinylidene
chloride $>1,2$-bichloropropene-2 $>$ Vinyl chloride $>$ Allyl acetate
Table 5.3

For those monomers in this problem, generally we can arrange in the following way according to Table 5.3 (more reactive on the left).

65. Solution:

M_{1} is styrene, M_{2} is 1-Chloro-1,3-butadiene.

Assume we have $\mathbf{1 g}$ copolymer. Each M_{2} unit has one Cl atom, so the total mass of M_{2} in the copolymer is: $\mathrm{m}_{2}=1 *(\mathrm{Cl} w \mathrm{wt} \%)^{*}(88.54 / 35.45)$

The total mass of M_{1} in the copolymer is $\left(1-\mathrm{m}_{2}\right)$;

$\left.\mathrm{F}_{1}=\left(\mathrm{m}_{1} / 104.15\right) /\left\{\left(\mathrm{m}_{1} / 104.15\right)+\mathrm{m}_{2} / 88.54\right)\right\}$						
$\mathbf{f}_{\mathbf{1}}$	$\mathbf{C ~ w t \% ~ i n ~}$ polymer	Cl wt\% in polymer	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{m}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{1}}$	
0.892	81.8	10.88	0.2717	0.7283	0.695	
0.649	71.34	20.14	0.503	0.497	0.456	
0.324	64.95	27.92	0.6973	0.3027	0.27	
0.153	58.69	34.79	0.8689	0.1311	0.114	

66. Solution:

$$
\begin{gathered}
\mathrm{F}_{1}=\frac{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+\mathrm{f}_{1} \mathrm{f}_{2}}{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}+\mathrm{r}_{2} \mathrm{f}_{2}^{2}} \\
\frac{\mathrm{f}_{1}\left(1-2 \mathrm{~F}_{1}\right)}{\mathrm{F}_{1}\left(1-\mathrm{f}_{1}\right)}=\mathrm{r}_{1}\left(\frac{\mathrm{f}_{1}^{2}\left(\mathrm{~F}_{1}-1\right)}{\mathrm{F}_{1}\left(1-\mathrm{f}_{1}\right)^{2}}\right)+\mathrm{r}_{2} \\
\mathrm{~A}=\mathrm{r}_{1} \mathrm{~B}+\mathrm{r}_{2}
\end{gathered}
$$

$\mathbf{f 1}$	F1	A	B
0.083	0.52	-0.00696	-0.00756
0.126	0.58	-0.03977	-0.01505
0.159	0.61	-0.06819	-0.02285
0.206	0.64	-0.11351	-0.03786
0.225	0.66	-0.14076	-0.04342
0.288	0.7	-0.23114	-0.07012
0.318	0.71	-0.27583	-0.0888
0.391	0.74	-0.41646	-0.14483
0.471	0.79	-0.65368	-0.21073
0.548	0.83	-0.96407	-0.30106

The data fit very well with the equation

67. Solution:

Eqn 5.7.4:

$$
\begin{gathered}
\mathrm{ki} / \text { ks }=\text { iso dyads/syndio dyads }=\mathrm{Ai} / \mathrm{Ae}^{*} \exp \left\{-\left(\mathrm{Ei}^{*}-\mathrm{Es}^{*}\right) / \mathrm{RT}\right\} \\
\ln \left(\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{s}}\right)=-\left(\mathrm{Ei}^{*}-\mathrm{Es}^{*}\right) / \mathrm{RT}+\mathrm{C}
\end{gathered}
$$

* β is the probability of an isotactic placement in the products, so (1- β) is the probability of a syndiotactic placement.

$$
\mathrm{ki} / \mathrm{ks}=\text { iso dyads/syndio dyads= } \beta /(1-\beta)
$$

68. Solution:

$$
\begin{gather*}
N_{n i}=N_{n s} \tag{5.9.1}\\
p_{h}=\frac{v_{h}}{v_{h}+v_{i}+v_{s}}=\frac{\sum N_{n i}=\sum N_{n s}}{\sum N_{n i}+\sum N_{n s}+\sum N_{n i}\left(n_{i}-1\right)+\sum N_{n s}\left(n_{s}-1\right)} \\
=\frac{\left(\sum N_{n i}+\sum N_{n s}\right)}{\left\{\sum N_{n i}+\sum N_{n s}+\sum N_{n i}\left(n_{i}-1\right)+\sum N_{n s}\left(n_{s}-1\right)\right\}} * \frac{1 / \sum N_{n s}}{1 / \sum N_{n s}} \\
p_{h}=\frac{2}{\overline{n_{i}}+\overline{n_{s}}}
\end{gather*}
$$

From the expression, $\overline{n_{s}}$ should be equally important as $\overline{n_{i}}$. The proposition is wrong. The sequence DL is an " r ", it has a $50: 50$ chance to be rm (hetero) or rr (syndio). The DD is an
" m ", half way to hetero mr or iso mm
69.

Solution:

Catalyst	Fraction of polymer				
			$\mathrm{T},{ }^{\circ} \mathrm{C}$	Iso	Hetero
		Methyl methacrylate	Syndio		
Thermal		60	8	33	59
n-Butyl lithium		-78	78	16	6
n-Butyl lithium	Methyl isobutyrate	-78	21	31	48
		$\alpha-$ Methyl styrene			
TiCl_{4}	Toluene	-78	-	19	81
$\mathrm{Et}_{3} \mathrm{Al} / \mathrm{TiCl}_{4}$	Benzene	25	3	35	62
$\mathrm{n}-\mathrm{Butyl}$ lithium	Cyclohexane	4	-	31	69

*Calculate $\mathrm{P}_{\mathrm{m}} \mathrm{s}$ separately based on three components in each reaction, and then use the averaged Pm for each reaction condition to plot point in the following figures.

For methyl methacrylate:

For α-methyl styrene:

From above figures, zero-order Markov statistics apply to all free radical, cationic polymerizations, and also apply to Ziegler-Natta catalyzed systems. However, for anionic reactions, there are bigger deviations, so higher-order Markov statistics may be needed.

70. Solution:

Under chain-end control, the addition of a monomer is influenced most by the configuration of the previous repeat unit. Under site control the ligand set may be chosen to provide a chiral confining environment, which determines the stereochemistry of addition.

Basically, if you have site control, a stereodefect is immediately "corrected". i.e. DDDDDLDDDDD. In other words, the catalyst knows D from L . This gives mmmmrmmmm, i.e. r's always occur in pairs. For chain end control, isospecific means "keep adding the same way". It does not prefer D to L. A defect looks like this: DDDDDDLLLLLLL, or mmmmmmrmmmm, i.e. r's occur singly. This can be seen in the triads.

