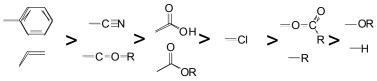
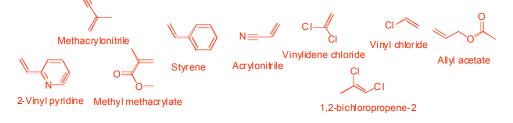
PS #8

64. Solution:

Based on styrene, the reactivity sequence of monomers is:


Methacrylonitrile>Acrylonitrile>2-Vinyl pyridine>Styrene>Vinylidene chloride

>1,2-bichloropropene-2>Vinyl chloride>Allyl acetate


For methyl methacrylate:

2-Vinyl pyridine >Methacrylonitrile>Methyl methacrylate>Acrylonitrile>Vinylidene chloride >1,2-bichloropropene-2>Vinyl chloride>Allyl acetate

Table 5.3

For those monomers in this problem, generally we can arrange in the following way according to Table 5.3 (more reactive on the left).

65. Solution:

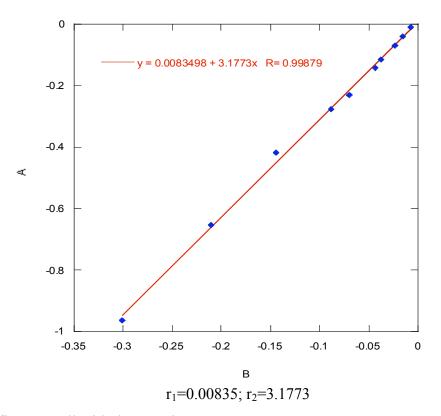
1-chloro-1,3-butadiene C₄H₅Cl M=88.54

styrene C_8H_8 M=104.15

M₁ is styrene, M₂ is 1-Chloro-1,3-butadiene.

Assume we have 1g copolymer. Each M_2 unit has one Cl atom, so the total mass of M_2 in the copolymer is: $m_2=1*(Cl wt\%)*(88.54/35.45)$

The total mass of M_1 in the copolymer is $(1-m_2)$;

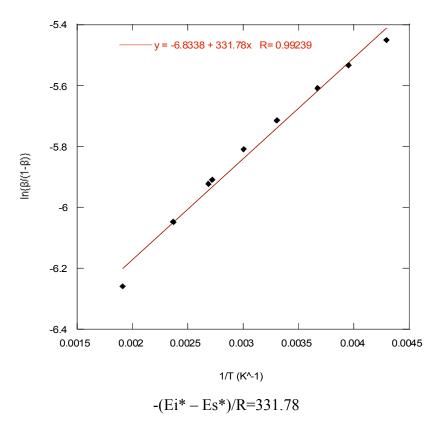

\mathbf{f}_1	C wt% in polymer	Cl wt% in polymer	m ₂	m ₁	F ₁
0.892	81.8	10.88	0.2717	0.7283	0.695
0.649	71.34	20.14	0.503	0.497	0.456
0.324	64.95	27.92	0.6973	0.3027	0.27
0.153	58.69	34.79	0.8689	0.1311	0.114

 $F_1=(m_1/104.15)/\{(m_1/104.15)+m_2/88.54)\}$

66. Solution:

$$\begin{split} F_{1} &= \frac{r_{1}f_{1}^{2} + f_{1}f_{2}}{r_{1}f_{1}^{2} + 2f_{1}f_{2} + r_{2}f_{2}^{2}} \\ \frac{f_{1}(1 - 2F_{1})}{F_{1}(1 - f_{1})} &= r_{1}\left(\frac{f_{1}^{2}(F_{1} - 1)}{F_{1}(1 - f_{1})^{2}}\right) + r_{2} \end{split}$$

f1	F1	Α	В
0.083	0.52	-0.00696	-0.00756
0.126	0.58	-0.03977	-0.01505
0.159	0.61	-0.06819	-0.02285
0.206	0.64	-0.11351	-0.03786
0.225	0.66	-0.14076	-0.04342
0.288	0.7	-0.23114	-0.07012
0.318	0.71	-0.27583	-0.0888
0.391	0.74	-0.41646	-0.14483
0.471	0.79	-0.65368	-0.21073
0.548	0.83	-0.96407	-0.30106


The data fit very well with the equation

67. Solution:

Eqn 5.7.4:

$$\ln(k_i/k_s) = -(Ei^* - Es^*)/RT + C$$

* β is the probability of an isotactic placement in the products, so (1- β) is the probability of a syndiotactic placement.

 $(Ei^* - Es^*) = -2.76 (kJ/mol)$

68. Solution:

(5.9.1)

$$N_{ni} = N_{ns}$$

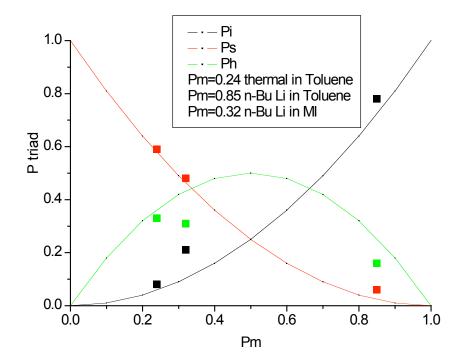
$$\sum N_{ni} = \sum N_{ns}$$

$$p_{h} = \frac{v_{h}}{v_{h} + v_{i} + v_{s}} = \frac{\sum N_{ni} + \sum N_{ns}}{\sum N_{ni} + \sum N_{ns} + \sum N_{ni}(n_{i} - 1) + \sum N_{ns}(n_{s} - 1)}$$

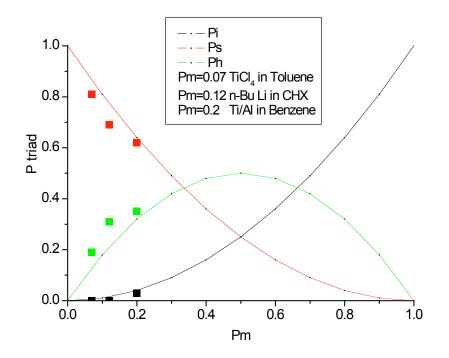
$$= \frac{(\sum N_{ni} + \sum N_{ns} + \sum N_{ni}(n_{i} - 1) + \sum N_{ns}(n_{s} - 1))}{\{\sum N_{ni} + \sum N_{ns} + \sum N_{ni}(n_{i} - 1) + \sum N_{ns}(n_{s} - 1)\}} * \frac{1/\sum N_{ns}}{1/\sum N_{ns}}$$

$$p_{h} = \frac{2}{n_{i} + n_{s}}$$

From the expression, $\overline{n_s}$ should be equally important as $\overline{n_i}$. The proposition is wrong. The sequence DL is an "r", it has a 50:50 chance to be rm (hetero) or rr (syndio). The DD is an


"m", half way to hetero mr or iso mm

69. **Solution:**


		Fraction of polymer							
Catalyst	Solvent	Т, °С	Iso	Hetero	Syndio				
Methyl methacrylate									
Thermal	Toluene	60	8	33	59				
n-Butyl lithium	Toluene	-78	78	16	6				
n-Butyl lithium	Methyl isobutyrate	-78	21	31	48				
•	α-Me	thyl styrene		•					
TiCl ₄	Toluene	-78	-	19	81				
Et₃Al/TiC1₄	Benzene	25	3	35	62				
n-Butyl lithium	Cyclohexane	4	-	31	69				

*Calculate P_ms separately based on three components in each reaction, and then use the averaged Pm for each reaction condition to plot point in the following figures.

For methyl methacrylate:

For α-methyl styrene:

From above figures, zero-order Markov statistics apply to all free radical, cationic polymerizations, and also apply to Ziegler-Natta catalyzed systems. However, for anionic reactions, there are bigger deviations, so higher-order Markov statistics may be needed.

70. Solution:

Under *chain-end control*, the addition of a monomer is influenced most by the configuration of the previous repeat unit. Under *site control* the ligand set may be chosen to provide a chiral confining environment, which determines the stereochemistry of addition.

Basically, if you have site control, a stereodefect is immediately "corrected". i.e. DDDDDDDDDDDD. In other words, the catalyst knows D from L. This gives mmmmrmmmm, i.e. r's always occur in pairs. For chain end control, isospecific means "keep adding the same way". It does not prefer D to L. A defect looks like this: DDDDDDDLLLLLLLL, or mmmmmmmmm, i.e. r's occur singly. This can be seen in the triads.