Problem 1.

BI diblock copolymer with 2:1 B:I molar ratio
15 repeat units $\rightarrow 10 \mathrm{~B}$ repeat units, 5 I repeat units
From given microstructure:
~ 5 cis 1,4 units
~ 4 trans 1,4 units
1 vinyl $(1,2)$ unit

Note: There will be some trans $1,4,1,2$, and 3,4 isoprene repeat units present in the block copolymer, but in very small frequency as compared to cis 1,4 units.

Problem 2.

92.1 \% 1,4 poly(butadiene)

$$
\mathrm{M}_{0}=54 ; \mathrm{M}_{\mathrm{n}}=168000 \rightarrow \mathrm{~N}=3111
$$

7.9 \% 1,2 poly(butadiene)
$\mathrm{N}_{1,4}=(3111)(0.921)=2865$
$\mathrm{N}_{1,4}: \mathrm{N}_{1,2}=11.6: 1$
$\mathrm{N}_{1,2}=246$ (on average $11.61,4$ units per 1,2 unit)

Since there are 4 backbone carbon atoms in a 1,4 repeat unit and 2 in a 1,2 repeat unit:
Mean \# of C atoms between ethyl branches in hydrogenated polymer: $(11.6)(4)+1=47.4$

Problem 3.

Synthesis of the polyester:

Addition of diisocyanate:

Crosslinking with 1,4-butanediol:

$$
\downarrow \quad \mathrm{HO}+\underset{\mathrm{H}_{2}}{\mathrm{C}} \mathrm{H}_{4} \mathrm{OH}
$$

Crosslinking through isocyanate groups (NCO reacts with active $\mathrm{N}-\mathrm{H}$ on extended polymer chain):

Problem 4.

$n_{i}=\frac{m_{i}}{M_{i}} \quad M_{n}=\frac{\sum_{i} n_{i} M_{i}}{\sum_{i} n_{i}} \quad M_{w}=\frac{\sum_{i} n_{i} M_{i}{ }^{2}}{\sum_{i} n_{i} M_{i}}=\frac{\sum_{i} m_{i} M_{i}}{\sum_{i} m_{i}} \quad M_{z}=\frac{\sum_{i} n_{i} M_{i}{ }^{3}}{\sum_{i} n_{i} M_{i}{ }^{2}}$
From the data we calculate: $\mathrm{M}_{\mathrm{n}}=29100 ; \mathrm{M}_{\mathrm{w}}=46100 ; \mathrm{M}_{\mathrm{z}}=62500$

Problem 5.

Note: Problem should read " $\mathrm{M}_{\mathrm{i}} \times 10^{-5}(\mathrm{~g} / \mathrm{mol})$ " or else we would not even have one repeat unit!

$$
M_{v}=\left(\frac{\sum_{i} n_{i} M_{i}^{1+a}}{\sum_{i} n_{i} M_{i}}\right)^{1 / a}
$$

From data:
M_{v} in acetone: $662000 ; \mathrm{M}_{\mathrm{v}}$ in chloroform: 665000
Compare with $\mathrm{M}_{\mathrm{n}}=597000$ and $\mathrm{M}_{\mathrm{w}}=671000$
Generally the viscosity average molecular weight falls between the values of M_{n} and M_{w} for a flexible polymer.

Problem 6.

A distribution based on prominent members of the Golden Gopher football team:

Athlete	Mass (kg)	w_{i}	$\mathrm{w}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
Laurence Maroney (RB)	93	.15	13.95
Greg Eslinger (C)	129.5	.20	25.9
Brian Cupito (QB)	88	.14	12.32
Mark Setterstrom (OG)	134	.21	28.14
Jared Ellerson (WR)	91	.14	12.74
Mike Sherels (MLB)	105	.16	16.8

$M_{n}=\frac{\sum_{i} M_{i}}{7}=106.8 \mathrm{~kg}$
$M_{w}=\sum_{i} w_{i} M_{i}=109.9 \mathrm{~kg}$
$P D I=\frac{M_{w}}{M_{n}}=1.03$

Despite the noticeable difference in size between the offensive linemen (Eslinger and Setterstrom) and the other players, the PDI indicates that this is a narrow distribution.

Go Gophers!

Problem 7.

$w_{i}=\frac{z^{z+1}}{\Gamma(z+1)} \frac{M_{i}{ }^{z}}{M_{n}{ }^{z+1}} \exp \left(-\frac{z M_{i}}{M_{n}}\right)$
$\frac{\partial w_{i}}{\partial M_{i}}=\frac{z^{z+1}}{\Gamma(z+1)}\left[\frac{z M_{i}{ }^{z-1}}{M_{n}{ }^{z+1}} \exp \left(-\frac{z M_{i}}{M_{n}}\right)-\frac{M_{i}{ }^{z}}{M_{n}{ }^{z+1}} \frac{z}{M_{n}} \exp \left(-\frac{z M_{i}}{M_{n}}\right)\right]$
$\frac{\partial w_{i}}{\partial M_{i}}=\frac{z^{z+2}}{\Gamma(z+1)} \exp \left(-\frac{z M_{i}}{M_{n}}\right)\left[\frac{M_{i}{ }^{z-1}}{M_{n}{ }^{z+1}}-\frac{M_{i}{ }^{z}}{M_{n}{ }^{z+2}}\right]$
$\frac{\partial w_{i}}{\partial M_{i}}=\frac{z^{z+2}}{\Gamma(z+1)} \frac{M_{i}{ }^{z-1}}{M_{n}} \exp \left(-\frac{z M_{i}}{M_{n}}\right)\left[1-\frac{M_{i}}{M_{n}}\right]$

Thus if $\mathrm{M}_{\mathrm{i}}=\mathrm{M}_{\mathrm{n}}, \frac{\partial w_{i}}{\partial M_{i}}=0$; corresponding to a maximum in w_{i}

Problem 8.

(a)

(b)

(c)

(d)

poly(acrylonitrile)
Note: This would usually be named poly(vinyl cyanide), but imagine the public relations backlash!
(e)

Problem 9.

1206
$-\quad 108$ (silver ion)

Since the repeat unit of polystyrene is $104 \mathrm{~g} / \mathrm{mol}$, this peak corresponds to 10 repeat units, with 58 mass units as a remainder (likely sec-butyl lithium initiator fragment and terminal hydrogen end groups: 57 and 1 , respectively)

Assuming only head-to-tail addition, there will be 2^{n} possible structures, with $n=10$; thus there are 1024 possible distinct chemical structures for the polystyrene represented by this peak.

Problem 10.

In general light scattering (gives M_{w}) and osmotic pressure (gives M_{n}) have errors of a few percent. Thus the answers by these two techniques agree well (although they have one more significant figure than justified!). However, it is unreliable to get M_{w} / M_{n} from two independent experiments, when the polydispersity is small.

Problem 11.

The carbon-carbon bonds in the backbone of the poly(styrene) chain can each take three forms: trans, gauche $(+$), and gauche $(-)$. If we assume all three are equally likely (in reality, trans is slightly favored energetically), then there are 3^{r} possible conformations, where r represents the number of carbon-carbon bonds in the backbone. The poly(styrene) molecule from Problem 9 has 10 repeat units, and thus 19 carbon-carbon bonds (neglecting end groups). Therefore, the number of possible conformations is 3^{19}, or 116,226,147.

Problem 12.

$R_{g}=b \sqrt{\frac{N}{6}}=b \sqrt{\frac{M}{6 M_{0}}}$
For poly(styrene): $R_{g}=(6.7) \sqrt{\frac{(100000)}{6(104)}}=84.8 \AA$
For poly(ethylene oxide): $R_{g}=(6.0) \sqrt{\frac{(100000)}{6(44)}}=116.8 \AA ́$
For poly(ethylene): $R_{g}=(5.9) \sqrt{\frac{(100000)}{6(28)}}=143.9 \AA$
Despite similar statistical segment length values, the three polymers have very different R_{g} values. This is due to the fact that statistical segment length is defined on a per monomer basis (not per mass). The bulky side group of poly(styrene) accounts for much of the monomer mass, and results in poly(styrene) having many less backbone bonds than either poly(ethylene oxide) or poly(ethylene).

Problem 13.

The thermal history of the polymer is important when taking DSC measurements. Possible reasons for obtaining different T_{g} values for PMMA from two separate instruments include:

1. Different heating rates were used during scan.
2. Different cooling rates were used during quench.
3. The samples were held at different quench temperatures.
4. The samples were held at the same quench temperature, but for different lengths of time
5. At least one of the samples was not annealed to equilibrium (above T_{g}) before the quench.

Problem 14.

Since the unit cell dimensions of crystalline poly(ethylene) are known, a volume per unit cell can be calculated. The unit cell contains 2 repeat units, with M_{0} equal to $28 \mathrm{~g} / \mathrm{mol}$, so a mass per unit cell can be also be calculated. Dividing this mass by the volume of the unit cell gives the density of the crystal. Using the crystal density, the amorphous density and the density of the polyethylene sample, the $\%$ crystallinity is given by:

$$
\% \text { crystallinity }=\frac{\rho_{\mathrm{c}}}{\rho}\left(\frac{\rho-\rho_{a}}{\rho_{c}-\rho_{a}}\right)
$$

Where $\rho_{\mathrm{c}}, \rho_{\mathrm{a}}$, and ρ are the densities of crystalline poly(ethylene), amorphous poly(ethylene), and the semi-crystalline poly(ethylene) sample respectively

