Problem 24.

$$
\begin{array}{ll}
\text { If catalyzed: } & \text { If uncatalyzed: } \\
R_{P}=-\frac{d c}{d t}=k c^{2} & R_{P}=-\frac{d c}{d t}=k c^{3} \\
\frac{d c}{c^{2}}=-k d t & \frac{d c}{c^{3}}=-k d t \\
\frac{1}{c}-\frac{1}{c_{0}}=k t & \frac{1}{c^{2}}-\frac{1}{c_{0}{ }^{2}}=2 k t \\
\frac{1}{c}=k t+\frac{1}{c_{0}} & \frac{1}{c^{2}}=2 k t+\frac{1}{c_{0}{ }^{2}}
\end{array}
$$

Plot both $1 / \mathrm{c}$ and $1 / \mathrm{c}^{2}$ vs. t and test for linearity.

So the data indicate catalyzed conditions. From the fit, $\mathrm{k}=0.62 \mathrm{~min}^{-1}$
A possible name for the polymer synthesized is poly(4-propylenepiperidine-2,6-dione)

Problem 25.

From the data:

- Monomer
- Dimer
\triangle Trimer
\times Tetramer

From theory:

The discrepancies in the plot (dimer curve shaped as $\mathrm{i}=1$ theory curve, etc.) can be explained by the fact that the dimer was the starting point for the experiment. Otherwise, there is very good agreement between the two curves.

Problem 26.

$N_{w}=\frac{\sum_{i} i w_{i}}{\sum_{i} w_{i}}$; To find p: $N_{w}=\frac{1+p}{1-p}$
$N_{w}=208.6 ; p=.9904$

A smaller value of p would increase the maximum w_{i} but also result in a narrower distribution, which would reduce the accuracy of the prediction even further at large i.

Problem 27.

$$
K=\frac{[\mathrm{OCO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{COOH}][\mathrm{OH}]}
$$

Under conditions of stoichiometric balance:
$K=\frac{[\mathrm{OCO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{COOH}]^{2}}=\frac{\left(p[\mathrm{COOH}]_{0}\right)\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left\{(1-p)[\mathrm{COOH}]_{0}\right\}^{2}}$
Simplify and solve for $\left[\mathrm{H}_{2} \mathrm{O}\right.$:
$\left[\mathrm{H}_{2} \mathrm{O}\right]=K \frac{(1-p)^{2}[\mathrm{COOH}]_{0}}{p}=K[\mathrm{COOH}]_{0}\left(\frac{1-p}{1}\right)\left(\frac{1-p}{p}\right)$
Since $\mathrm{DP}_{\mathrm{n}}=\frac{1}{1-p}$ and $\frac{p}{1-p}=\mathrm{DP}_{\mathrm{n}}-1$:
$\left[\mathrm{H}_{2} \mathrm{O}\right]=K \frac{[\mathrm{COOH}]_{0}}{D P_{n}\left(D P_{n}-1\right)}$

Problem 28.

$$
R_{p}=-\frac{d[\mathrm{COOH}]}{d t}=k_{f}\left[R C\left(\mathrm{OH}_{2}\right)^{+}\right]\left[R^{\prime} \mathrm{OH}\right]-k_{d}\left[R C(\mathrm{OH})_{2} O R^{\prime} H^{+}\right]
$$

Find the rate of appearance/disappearance of the intermediate:

$$
\frac{d\left[R C(\mathrm{OH})_{2} O R^{\prime} H^{+}\right]}{d t}=-k_{r}\left[R C(\mathrm{OH})_{2} O R^{\prime} H^{+}\right]-k_{d}\left[R C(\mathrm{OH})_{2} O R^{\prime} H^{+}\right]+k_{f}\left[R C(\mathrm{OH})_{2}^{+}\right]\left[R^{\prime} \mathrm{OH}\right]
$$

Via PSSA, set the rate equal to zero and solve for the concentration of the intermediate:

$$
\begin{aligned}
& 0=-\left(k_{r}+k_{d}\right)\left[R C(\mathrm{OH})_{2} \mathrm{OR}^{\prime} H^{+}\right]+k_{f}\left[R C(\mathrm{OH})_{2}^{+}\right]\left[R^{\prime} \mathrm{OH}\right] \\
& \left(k_{r}+k_{d}\right)\left[R C(\mathrm{OH})_{2} O R^{\prime} H^{+}\right]=k_{f}\left[R C(\mathrm{OH})_{2}^{+}\right]\left[R^{\prime} \mathrm{OH}\right] \\
& {\left[R C(\mathrm{OH})_{2} O \mathrm{OR}^{\prime} H^{+}\right]=\frac{k_{f}\left[R C(\mathrm{OH})_{2}^{+}\right]\left[R^{\prime} \mathrm{OH}\right]}{\left(k_{r}+k_{d}\right)}}
\end{aligned}
$$

Insert into initial rate equation and simplify:

$$
\begin{aligned}
& R_{p}=k_{f}\left[R C\left(\mathrm{OH}_{2}\right)^{+}\right]\left[R^{\prime} \mathrm{OH}\right]-k_{d} \frac{k_{f}\left[R C(\mathrm{OH})_{2}^{+}\right]\left[R^{\prime} \mathrm{OH}\right]}{\left(k_{r}+k_{d}\right)} \\
& R_{p}=k_{f}\left[R C\left(\mathrm{OH}_{2}\right)^{+}\right]\left[R^{\prime} \mathrm{OH}\right]\left(1-\frac{k_{d}}{\left(k_{r}+k_{d}\right)}\right)
\end{aligned}
$$

Using the following equation for the equilibrium constant:

$$
K_{e q}=\frac{\left[R C(O H)_{2}^{+}\right]}{[R C O O H][H A]}
$$

and rearranging, the final answer is obtained:

$$
R_{p}=k_{f} K_{e q}[H A][R C O O H]\left[R^{\prime} O H\right]\left(\frac{k_{r}}{k_{r}+k_{d}}\right)
$$

The rate equation reduces to the expression obtained in class when $k_{r} \gg k_{d}$ which was the assumption made during the in class derivation.

Problem 29.

$$
x_{i}(p)=p^{(i-1)}(1-p)
$$

$$
p=\frac{k[A]_{0} t}{1+k[A]_{0} t}
$$

To find the maximum in time as a function of p, take the derivative with respect to time and set equal to zero.
$\frac{\partial x_{i}}{\partial t}=\frac{\partial x_{i}}{\partial p} \frac{\partial p}{\partial t}=\left((1-p)(i-1) p^{i-2}-p^{i-1}\right) \frac{\partial p}{\partial t}=0$
Since $\frac{\partial p}{\partial t}$ is independent of p, we can divide through leaving:
$\left((1-p)(i-1) p^{i-2}-p^{i-1}\right)=0$
Divide by p^{i-2} :
$((1-p)(i-1)-p)=0$
$p=\frac{i-1}{i}$
Rearranging:
$i=\frac{1}{1-p}=N_{n}$
So the maximum mole fraction in time of a specific i-mer is related to the number average degree of polymerization

For absolute amount:
$n_{i}=m_{0} p^{i-1}(1-p)^{2}$
Similarly:

$$
\begin{aligned}
& \frac{\partial n_{i}}{\partial t}=\frac{\partial n_{i}}{\partial p} \frac{\partial p}{\partial t}=m_{0}\left((1-p)^{2}(i-1) p^{i-2}-2(1-p) p^{i-1}\right) \frac{\partial p}{\partial t}=0 \\
& (1-p)^{2}(i-1) p^{i-2}-2(1-p) p^{i-1}=0 \\
& (1-p)(i-1)-2 p=0 \\
& p=\frac{i-1}{i+1}
\end{aligned}
$$

Rearranging:
$i=\frac{1+p}{1-p}=N_{w}$
So the maximum amount in time of a specific i-mer is related to the weight average degree of polymerization.

Problem 30.

(a)

Acid-catalyzed intermediate:

A

Self-catalyzed intermediate:

(b)

For self-catalyzed:

$$
D P_{n}^{2}=1+2[A]_{0}^{2} k t
$$

Self catalyzed

It would take 231.5 hours to obtain a number average degree of polymerization of 300
(c)

For acid catalyzed:
$N=1+[A]_{0} k t$

It would only take 0.5 hours to reach a number average degree of polymerization of 300 .
(d)

In the self catalyzed reaction, catalyst is lost as monomer is consumed, resulting in a leveling off of the reaction. This effect is not observed for the strong acid catalyzed reaction.

