Problem Set \#2

15.

28.9 mol

35.3 mol

96.5 mol
$\mathrm{N}_{\text {end groups }}=160.7 \mathrm{~mol}$
Each polymer chain has two ending groups, so $\mathrm{n}=80.35 \mathrm{~mol}$
$\mathrm{m}_{\text {total }}=10^{6} \mathrm{~g}$
Neglecting ending groups, $\mathrm{M}_{\mathrm{n}}=12445.6 \mathrm{~g} / \mathrm{mol}$

Degree of polymerization $\mathrm{N}=2 \mathrm{~m}=2 * \mathrm{M}_{\mathrm{n}} /\left(\mathrm{M}_{1}+\mathrm{M}_{2}-36\right)=110$
During the condensation step, assume amine and acid are equivalent

$$
\begin{gathered}
\mathrm{N}=1 /(1-\mathrm{p})=110 \\
\mathrm{p}=0.9909
\end{gathered}
$$

So, those numbers are consistent with each other
16.

styrene

hydroxyethylmethacrylate

hexamethylene diisocyanate

The crosslinked network is shown below, styrene and hydroxyethylmethacrylate are polymerized by addition reaction (chain polymerization), diisocyanates are crosslinking reagents which react with hydroxyl groups by condensation reaction, to form a complicated network.

Crosslinking reaction is carried out in dilute solution in order to get primarily intramolecular product, which means diisocyanates react with hydroxyl group within one polymer chain. While intermolecular reaction involves reaction between the polymer chains.

At high concentration, interaction between polymer coil will increase, resulting in some reaction between cyanate group on chain A and hydroxy groups on chain B. If concentration is low enough, the only chance for cyanate group in chain A is to react with some other hydroxyl group on the same chain to form a loop.
17.

So for step polymerization, the chance to get one x-mer chain is $N_{x}=p^{x-1}(1-p)$
For N polymer chains $\quad N_{x}=N p^{x}(1-p) \quad \mathrm{N}=\mathrm{N}_{0}(1-\mathrm{p})$

$$
\begin{gathered}
N_{x}=N p^{x}(1-p)=N_{0}(1-p)^{2} p^{x-1} \\
\frac{\partial N_{x}}{\partial p}=-2(1-p) p^{x-1}+(x-1) p^{x-2}(1-p)^{2}=0 \\
p_{c}=\frac{x-1}{x+1}
\end{gathered}
$$

So when $\mathrm{p}<\mathrm{p}_{\mathrm{c}}, \mathrm{N}_{\mathrm{x}}$ increases with $\mathrm{x}\left(\frac{\partial N_{x}}{\partial p}>0\right)$; when $\mathrm{p}=\mathrm{p}_{\mathrm{c}}, \mathrm{N}_{\mathrm{x}}$ gets the maximum; when $\mathrm{p}>\mathrm{p}_{\mathrm{c}}$, N_{x} decreases.
For a catalyzed AB condensation, $\mathrm{k}_{\mathrm{c}}=2.47 * 10^{-4} \mathrm{l} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$, the monomer is

12-hydroxystearic acid

For the unit of rate constant, it is a second order reaction (self catalyzed)

$$
\begin{gathered}
-\frac{d c}{d t}=k c^{2} \\
\frac{1}{c_{0}}-\frac{1}{c_{0}(1-p)}=-k t
\end{gathered}
$$

Degree of polymerization $\mathrm{x}=1 /(1-\mathrm{p})=15$

$$
\mathrm{p}=14 / 15 ; \mathrm{c}_{0}=3 \mathrm{M} ; \mathrm{k}=2.47 * 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
$$

So

$$
\mathrm{t}=18900 \mathrm{~s}
$$

18.

PMMA
$\mathrm{M}_{\text {monomer }}=100.12 ; \mathrm{M}=500,000 ; \mathrm{N}=4994$
For rigid rod: $\mathrm{L}=\mathrm{N} * 2.5 * 10^{-10} \mathrm{~m}=1250 \mathrm{~nm} \approx 1$ micron
For condense ball: $\mathrm{V}=\rho \frac{4 \pi}{3} r^{3}=\frac{500000}{6.02 * 10^{23}}$ $\mathrm{R}=5.8 \mathrm{~nm} \approx 6 \mathrm{~nm}$
For random coil: $\mathrm{b}=0.6 \mathrm{~nm}$, so

$$
\mathrm{Rg}=\sqrt{\frac{N}{6}} b=17.3 \mathrm{~nm} \approx 20 \mathrm{~nm}
$$

19.

Two End groups have 6 Hs. For each monomer in the chain there are 4 Hs .
From NMR, we known Hs of ending groups: Hs from monomer $=1: 20$
So, the number of ending groups to monomers is (1/6): (20/4)=1:30
So N=30
$\mathrm{M}_{\mathrm{n}}=30 * 44+46$ (ending groups)=1366 (or without ending groups $\mathrm{M}_{\mathrm{n}}=1320$)
20.

10 g PS

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{w} 1}=\sum n_{i} m_{i}^{2} / \sum n_{i} m_{i}=100000 \\
& \mathrm{M}_{\mathrm{n} 1}=\sum n_{i} m_{i} / \sum n_{i}=70000 \\
& \sum n_{i} m_{i}=m_{1}=10 g
\end{aligned}
$$

20 g PS

$$
\mathrm{M}_{\mathrm{w} 2}=\sum n_{i} m_{i}^{2} / \sum n_{i} m_{i}=60000
$$

$$
\mathrm{M}_{\mathrm{n} 2}=\sum n_{i} m_{i} / \sum n_{i}=20000
$$

$$
\sum n_{i} m_{i}=m_{2}=20 g
$$

$$
\mathrm{M}_{\mathrm{n}}=\sum n_{i} m_{i} / \sum n_{i}=(10+20) /(10 / 70000+20 / 20000)=26250
$$

$$
\mathrm{M}_{\mathrm{w}}=\sum n_{i} m_{i}^{2} / \sum n_{i} m_{i}=(100000 * 10+60000 * 20) /(10+20)=73333
$$

21.

$$
\begin{aligned}
& \begin{array}{rlll}
1 \mathrm{~mol} & \text { Decane } & \mathrm{C}_{10} \mathrm{H}_{22} & \mathrm{M}_{1}=142.28 \\
1 \mathrm{~mol} & \text { Tetradecane } \mathrm{C}_{14} \mathrm{H}_{30}
\end{array} \\
& \mathrm{M}_{2}=198.39
\end{aligned}
$$

22.

(a)

Procedure:

Step 1 Substitution

Step 2 Condensation

(b)

Procedure:

